

Building resilient applications using
chaos engineering on AWS

Adrian Hornsby

Principal Technical Evangelist
Amazon Web Services

i A

AWS GameDay at Amazon

* A volunteer firefighter

* Created GameDay in 2006 to
purposefully create regular major failures

» Founded Chef, the Velocity Web
Performance & Operations Conference

Jesse Robbins, “Master of Disaster”

amazoncom
kel

Jesse Robbins

Availability Program

Rise of the monkeys

"Simian Army to keep our cloud safe,
secure, and highly available.”

- 2011 Netflix blog

Set of scheduled agent:

« Shuts down services randomly
- Slows down performances

« Checks conformity

- Breaks an entire region

- Integrates with spinnaker (CI/CD)

https://github.com/Netflix/SimianArmy

Chaos engineering is NOT about breaking things
randomly without a purpose, chaos engineering is
about breaking things in a controlled
environment and through well-planned
experiments in order to build confidence in your
application to withstand turbulent conditions.

Chaos engineering

A scientific method

q Steady

state

Hypothesis

N LY

experiment

Improve

/

Verify

Phases of chaos engineering

Phases of chaos engineering

q Steady

Improve
’ state
Verity Hypothesis

N L/

experiment

What is steady state?

"Normal” behavior of your system

Bcurrent

What is steady state?

Business + ops metric

Netflix Technology Blog
Learn more about how Netflix designs, builds, and operates our systems and engineering
organizations

eb 2, 2015 - 7 min

1N read

SPS: the Pulse of Netflix Streaming

Orders per second https://medium.com/netflix-techblog/

Phases of chaos engineering

q Steady

Improve
’ state
Verity Hypothesis

N L/

experiment

What if?

“What if this load balancer breaks?”
“What if Redis becomes slow?"

“What if a host on Cassandra goes away?”
"What if latency increases by 300ms?”
"What if the database stops?”

Make it everyone's problem!

Convergence Divergence

Phases of chaos engineering

q Steady

Improve
’ state
Verity Hypothesis

N LY

experiment

Failure injection

Start small and build confidence

- Application level (exceptions, errors, etc)
- Host level (services, processes, etc)

- Resource attacks (CPU, memory, 10, etc)

- Network attacks (dependencies, latency, packet loss, etc)
- AZ attack

Region attack
- People attack

Rules of thumbs

« Start very small
« As close as possible to production
« Minimise the blast radius.

- Have an emergency STOP!
Careful with state that can’t be rolled back

(corrupt or incorrect data)

Phases of chaos engineering

q Steady

Improve
’ state
Verity Hypothesis

N L/

experiment

Quantiftying the result of the experiment

Time to detect?

Time for notification? And escalation?
Time to public notification?

Time for graceful degradation to kick-in?
Time for self-healing to happen?

Time to recovery — partial and full?

Time to all-clear and stable?

Postmortems — COE (Correction of Errors)

- What happened?

How long did it take to detect the issue?

Is there an existing backlog item that would've prevented the event?
- What was the impact on customers and your business?

- What were the contributing factors?

- What data do you have to support this?

- What lessons did you learn?

- What corrective actions are you taking?

Phases of chaos engineering

q Steady

Improve
’ state
Verity Hypothesis

N L/

experiment

Fix it!

Tools and demos

Start simple and locall!

$ docker stop 94a2l14bbeebd

DDOS yourself

$ wrk -t12 -c400 -d30s http://127.0.0.1/api/health

Burn CPU with Stress(—ng)

https://kernel.ubuntu.com/~cking/stress-ng/

$ stress-ng --cpu 0--cpu-method matrixprod -t 60s

Adding latency to the network

$ tc qdisc add dev ethO root netem delay 300ms

Blocks DNS resolution

$ iptables -A INPUT -p tcp -m tcp --dport 53 -j DROP

Other fun things to do

Fill up disk

Network packet loss (using traffic-shaping)
Network packet corruption (using traffic-shaping)
Kills random processes

Detach (force) all EBS volumes

Mess with /etc/hosts

Amazon EC2
AWS System

Injecting Chaos to

USINg
Manager

https://medium.com/@adhorn/injecting-
chaos-to-amazon-ec2-using-amazon-
system-manager-ca95ee7878f5

adhorn / chaos-ssm-documents ® Unwatch ~
https'//gIthub'com/adhorn/ChaOS_Ssm_documents <» Code Issues 0 Pull requests 0 Projects 0 Wiki Security Insights
Collection of AWS SSM Documents to perform Chaos Engineering experiments
chaos-engineering chaos-monkey chaos-testing aws aws-ec2 amazon-web-services software-engine

D 15 commits ¥ 1 branch © 0 releases 42 1 contributo

schemaVersion: '2.2'

Branch: master v New pull request Create new file @ Upload fi

description: Run a CPU stress on an instance
parameters:
duration:
type: String
description: The duration - in seconds - of the attack. (Required)
default: "60"
cpu:
type: String
description: 'Specify the number of CPU stressors to use (default all)’
default: "o"
mainSteps:
— action: aws:runShellScript
name: ChaosCPUAttack

inputs:

runCommand:
https://www.mankier.com/1/stress—ng#Examples
- stress-ng ——cpu {{ cpu }} ——cpu-method matrixprod -t {{ duration }}s

& adhorn improve readme

[) LICENCE

[£) README.rst

[) blackhole-dns-stress.yml

) blackhole-dynamo-stress.yml
[) blackhole-ec2-stress.yml

) blackhole-s3-stress.yml

[£) blackhole-stress.yml

) cpu-stress.yml

[£) io-stress.yml

[£) latency-delta-stress.ymi

[£) latency-stress.yml

[E) memory-stress.yml

[E) network-corruption-stress.yml
[Z) network-loss-stress.yml

[£) upload-document.sh

Adding Licence

improve readme

Adding more attacks and fixing some typos
Adding dynanodb blackhole attack

Adding EC2 blackhole attack

Adding S3 blackhole attack

Adding more attacks and fixing some typos
Adding more attacks and fixing some typos
Adding more attacks and fixing some typos
Adding more attacks and fixing some typos
Adding more attacks and fixing some typos
Adding more attacks and fixing some typos
Adding more attacks and fixing some typos
Adding more attacks and fixing some typos

adding tags

import os
from chaos_lambda import inject_delay, inject_exception, inject_statuscode

[) [)
‘ n ectl n Cha OS to # this should be set as a Lambda environment variable
os.environ['CHAOS_PARAM'] = 'chaoslambda.config'
@inject_exception
EE} | | l EE} def handler_with_exception(event, context):

return {
'statusCode': 200,
'body': 'Hello from Lambda!"

$ pip install chaos-T1ambda)

@inject_exception(exception_type=TypeError, exception_msg="foobar')
def handler_with_exception_arg(event, context):

return {
» 'statusCode': 200,
i adhorn «
U _ 'body': 'Hello from Lambda!'
}

chaos-lambda 0.2.4 v | Lometummion @inject_exception(exception_type=ValueError)
= : S def handler_with_exception_arg_2(event, context):

pip install chaos-lambda I& Last released: about 7 hours ago return {
'statusCode': 200,

'body': 'Hello from Lambda!'

Decorators and Class to inject failures into AWS Lambda functions Manage project

Navigation . S @inject_statuscode
Project description def handler_with_statuscode(event, context):

= Project description Documentation Status Issues Maintenance Pypi Travis Coveralls (GLTIT
u I u: u I I VI Vi
¥p 'statusCode': 200,

D Release history chaos_lambda is a small library injecting chaos into AWS Lambda. It offers simple python decorators to do delay, 'body': 'Hello from Lambda!"
exception and statusCode injection and a Class to add delay to any 3rd party dependencies called from your function. }
3 Dpownload files This allows to conduct small chaos engineering experiments for your serverless application in the AWS Cloud.

* Support for Latency injection using delay @inject_statuscode(error_code=400)

* Support for Exception injection using exception_msg def handler_with_statuscode_arg(event, context):

Project links e Support for HTTP Error status code injection using error_code return {

e Using for SSM Parameter Store to control the experiment using isEnabled ‘statusCode': 200
. ’
'body': 'Hello from Lambda!"

@inject_delay
def handler_with_delay(event, context):
return {
'statusCode’': 200,
'body': 'Hello from Lambda!’

adhorn / aws-lambda-chaos-injection @usedbyr 1 @Watchv 5

httpSI//githUb.Com/ad horn/aws_lambda_ <> Code Issues 4 Pull requests 2 Projects 0 Wiki Security Insights Settings
chaos-injection

Chaos Injection library for AWS Lambda

serveless chaos-engineering chaos-monkey aws lambda-functions amazon-web-services sre testing Manage

D 77 commits I 5 branches > 0 releases 42 2 contributors

Branch: master v New pull request Create new file Upload files Find F

& adhorn Merge pull request #15 from adhorn/refactortests - Latest cc

B examples pep8 love - part2

s source Allowing dynamic configuration of the decorator with arguments as def...
in tests fix test exception not called

) .gitignore cover to gitignore

) .travisyml trying to fix travis.ci part 2

[£) CODE_OF CONDUCT.md Adding Code of Conduct

[E) LICENSE Initial commit - Failurelnjection Library

) Makefile Improve the Doc, setup

[E) README.rst minor documentation change

[E) chaos_lambda.py version bump

E) conf.py version bump

[£) index.rst refactoring - naming convention, making it more pythonic ;)
) make.bat Refactor to make it distribution ready

E) pytest.ini trying to fix travis.ci

[E) readthedocs.yml fix the version of requirements needed to build the doc

[E) requirements-dev.txt trying to fix travis.ci

[requirements.txt fix requirements agains ...

[E) setup.cfg trying to fix travis.ci

adhorn [aws-chaos-scripts @ Unwatch~- 5

https://g ithu b.co m/ad horn/aWS—ChaOS—Scri pts <> Code ssues 0 Pull requests o Actions Projects 0 Wiki Security Insights

Collection of pythen scripts to run failure injection on AWS infrastructure

aWs chaos-engineering chaos-monkey software-engineering amazon-web-services sre Manage topics

f) 26 commits ¥ 1 branch I 0 packages £ 0 releases 22 2 contributors

[] []
() F a l Z N et O r k n Branch: master - New pull request Create new file Upload files = Fin
| WA W I

i adhorn Merge pull request #1 from setheliot/master Latest co
[) []
. Fa I |. E la St I Ca C h e scripts fail_az.py: add user configurable flag for limit ASG
gitignore initial commit
[)
¢ F |. R D S AUTHORS initial commit
dl

LICENSE initial commit

' README.md README (fail_az.py): add user configurable flag for limit ASG
* Fail Instances '

requirements.txt Adding script to stop random instance

setup.py Adding support for elasticache redis failover.

EE README.md

Disclaimer

I USE AT YOUR OWN RISK I

Using these scripts may create an unreasonable risk. If you choose to use the scripts provided here in
activities, you do so at your own risk. None of the authors or contributors, or anyone else connected w
in any way whatsoever, can be responsible for your use of the scripts contained in this repository. Use
if you understand what the code does

Collection of python scripts to inject failure in the AWS Infrastructure

Challenges of chaos engineering

Big challenges to chaos engineering

Mostly cultural

No time or flexibility to simulate disasters
- Teams already spending all of its time fixing things
« Can be very political

Might force deep conversations

Deeply invested in a specific technical roadmap (micro-services)
that chaos engineering tests show is not as resilient to failures as
originally predicted

QWS SUMMIT
~—7 ONLINE

https://twitter.com/adhorn?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor

