

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building resilient applications using
chaos engineering on AWS

Adrian Hornsby

O P E 1 0

Principal Technical Evangelist

Amazon Web Services

• A volunteer firefighter

• Created GameDay in 2006 to

purposefully create regular major failures

• Founded Chef, the Velocity Web

Performance & Operations Conference
Jesse Robbins, “Master of Disaster”

AWS GameDay at Amazon

Rise of the monkeys

“Simian Army to keep our cloud safe,
secure, and highly available.”

- 2011 Netflix blog

Set of scheduled agent:

• Shuts down services randomly

• Slows down performances

• Checks conformity

• Breaks an entire region

• Integrates with spinnaker (CI/CD)

https://github.com/Netflix/SimianArmy

Chaos engineering is NOT about breaking things

randomly without a purpose, chaos engineering is

about breaking things in a controlled

environment and through well-planned

experiments in order to build confidence in your

application to withstand turbulent conditions.

Steady
state

Hypothesis

Run
experiment

Verify

Improve

Chaos engineering
A scientific method

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Steady
state

Hypothesis

Run
experiment

Verify

Improve

Phases of chaos engineering

What is steady state?
”Normal” behavior of your system

What is steady state?
Business + ops metric

https://medium.com/netflix-techblog/

Phases of chaos engineering

Steady
state

Hypothesis

Run
experiment

Verify

Improve

What if?

“What if this load balancer breaks?”

“What if Redis becomes slow?”

“What if a host on Cassandra goes away?”

”What if latency increases by 300ms?”

”What if the database stops?”

Make it everyone’s problem!

Steady
state

Hypothesis

Run
experiment

Verify

Improve

Phases of chaos engineering

Failure injection

Start small and build confidence

• Application level (exceptions, errors, etc)

• Host level (services, processes, etc)

• Resource attacks (CPU, memory, IO, etc)

• Network attacks (dependencies, latency, packet loss, etc)

• AZ attack

• Region attack

• People attack

Rules of thumbs

• Start very small

• As close as possible to production

• Minimise the blast radius.

• Have an emergency STOP!

• Careful with state that can’t be rolled back

(corrupt or incorrect data)

Steady
state

Hypothesis

Run
experiment

Verify

Improve

Phases of chaos engineering

Quantifying the result of the experiment

• Time to detect?

• Time for notification? And escalation?

• Time to public notification?

• Time for graceful degradation to kick-in?

• Time for self-healing to happen?

• Time to recovery – partial and full?

• Time to all-clear and stable?

Postmortems – COE (Correction of Errors)

• What happened?

• How long did it take to detect the issue?

• Is there an existing backlog item that would’ve prevented the event?

• What was the impact on customers and your business?

• What were the contributing factors?

• What data do you have to support this?

• What lessons did you learn?

• What corrective actions are you taking?

Steady
state

Hypothesis

Run
experiment

Verify

Improve

Phases of chaos engineering

Fix it!

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Start simple and local!!

$ docker stop 94a214bbeebd

DDoS yourself

$ wrk -t12 -c400 -d30s http://127.0.0.1/api/health

Burn CPU with Stress(–ng)

$ stress-ng --cpu 0--cpu-method matrixprod -t 60s

https://kernel.ubuntu.com/~cking/stress-ng/

Adding latency to the network

$ tc qdisc add dev eth0 root netem delay 300ms

Blocks DNS resolution

$ iptables -A INPUT -p tcp -m tcp --dport 53 -j DROP

Other fun things to do

• Fill up disk

• Network packet loss (using traffic-shaping)

• Network packet corruption (using traffic-shaping)

• Kills random processes

• Detach (force) all EBS volumes

• Mess with /etc/hosts

Injecting Chaos to
Amazon EC2 using
AWS System Manager

https://medium.com/@adhorn/injecting-
chaos-to-amazon-ec2-using-amazon-
system-manager-ca95ee7878f5

https://github.com/adhorn/chaos-ssm-documents

Injecting chaos to
AWS Lambda
$ pip install chaos-lambda

https://github.com/adhorn/aws-lambda-
chaos-injection

https://github.com/adhorn/aws-chaos-scripts

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Challenges of chaos engineering

Big challenges to chaos engineering

Mostly cultural

• No time or flexibility to simulate disasters

• Teams already spending all of its time fixing things

• Can be very political

• Might force deep conversations

• Deeply invested in a specific technical roadmap (micro-services)
that chaos engineering tests show is not as resilient to failures as
originally predicted

Thank you!

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Adrian Hornsby

https://medium.com/@adhorn

adhorn

https://twitter.com/adhorn?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor

