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Note from the editors

Welcome to the final issue of the Biopharmaceutical (BIOP) Report for 

2018! In this issue, we will review some of the productive and exciting 

accomplishments in 2018 for the Biopharmaceutical Section that will be 

continued into the following year. This issue’s featured article was writ-

ten by Ilya Lipkovich of Eli Lilly and Company and Alex Dmitrienko 

of Mediana Inc, which describes issues and examples with Exploratory 

and confirmatory subgroup analysis in clinical trials.

This issue also presents updates on some other Biopharmaceutical 

Section activities, such as a summary from the Juliet Ndukum on 

the Biopharmaceutical Section mentoring program activities from the 

launch of the program to the present day. There is also an announce-

ment for the upcoming 2019 ASA-Biopharmaceutical section nonclini-

cal biostatistics conference to be held next summer. We also have a 

few updates from the Section working groups, including updates of the 

Alzheimer’s disease Scientific Working from Hong Liu-Seifert and 

Steve Wilson.

The Biopharmaceutical report editors are looking forward to continu-

ing to help provide information for our members in 2019, and we also 

welcome feedback and suggestions to help improve the BIOP Report. 

We hope you enjoy reading this issue, and wish everyone all the best in 

the upcoming and exciting 2019!
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EXPLORATORY AND CONFIRMATORY 
SUBGROUP ANALYSIS IN CLINICAL TRIALS

1. INTRODUCTION
Evaluating heterogeneity of treatment effects in clinical 
trials remains one of the most challenging tasks of the 
drug development process. On one hand, the goal of a 
pivotal Phase III clinical trial is to ascertain the treat-
ment effect in the target population of patients in order 
to ultimately support appropriate drug labeling. Clinical 
trials are rarely designed with a clear expectation that 
the beneficial effect of treatment may be limited to a 
subpopulation. On the other hand, modern precision 
(a.k.a. personalized) medicine assumes customization 
of therapies with respect to individual patient character-
istics, which means that the “one size suits all” approach 
is no longer tenable (Ruberg at al., 2010). Identifying 
treatment effect heterogeneity is especially warranted in 
situations when (1) the overall treatment effect is driven 
by a subpopulation and/or (2) an unacceptable safety 
signal is detected within a certain subpopulation. 

Several regulatory guidelines recently released by the 
U.S. Food and Drug Administration (FDA) and Euro-
pean Medicines Agency (EMA) provide much useful 
information on the general topic of subgroup evaluation 
in late-stage clinical trials. General biomarker-related 
considerations, including biomarker-driven designs, are 
presented in the FDA guidance on enrichment strategies 
(FDA, 2012). The EMA guideline on subgroup analysis 
(EMA, 2014) discusses approaches to investigating 
subgroup effects in clinical trials with emphasis on an 
exploratory setting. The confirmatory setting is consid-
ered in the FDA and EMA guidelines on multiplicity 
issues in clinical trials (FDA, 2017; EMA, 2017). The 
two guidance documents focus on pivotal trials with a 
few pre-specified patient populations. A similar setting 
is assumed in the FDA and EMA guidelines on adaptive 
designs (EMA, 2007; FDA, 2018) when data-driven 
rules for population selection are described.

Ilya Lipkovich, Eli Lilly and Company and Alex Dmitrienko, Mediana Inc

Following the framework in a survey of current indus-
try practices (Mayer et al., 2015) we consider the follow-
ing four types of subgroup analyses in clinical trials:

•	 Confirmatory. 
•	 Exploratory (in the narrow sense).
•	 Post-hoc.
•	 Biomarker and subgroup discovery. 
This taxonomy reflects current clinical practice 

rather than what may be desired in the “ideal world.”
Type 1 (Confirmatory subgroup analysis): This 

includes strategies that are preplanned, i.e., defined 
prior to data unblinding, and where the number of 
hypotheses (that may include various subgroups and 
the overall population) is relatively small. Confirmatory 
subgroup analysis is limited to biomarkers/subgroups 
previously identified (perhaps in earlier Phase II stud-
ies) and where the Type I error is required to be con-
trolled in the strong sense. 

Type 2 (Exploratory subgroup analysis in the nar-
row sense): This includes strategies specified in the 
exploratory analysis section of statistical analysis plans. 
The number of evaluated biomarkers is relatively small, 
typically limited to known prognostic variables (some 
of them are included as stratification covariates in the 
primary analysis). Often it is conducted using multi-
stage strategies where the first group of biomarkers is 
selected by fitting separate regression models with one 
biomarker at a time. Then each selected continuous 
biomarker is examined further by choosing an optimal 
cutoff to define patient subgroups. The Type I error rate 
is typically controlled only for some elements of the 
multi-stage strategy, e.g., selection of the biomarker-
specific cutoffs.	

Type 3 (Post-hoc subgroup analyses): This covers 
subgroup investigations that are unanticipated prior to 
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data unblinding and therefore are not pre-specified in a 
statistical analysis plan. Typically, these are subgroups 
with unanticipated post-hoc findings after data unblind-
ing that may have trigged regulatory inquiries or sub-
groups that raise regulatory or sponsor’s concerns after 
drug approval. The Type I error rate is typically only 
partially controlled within the selected set subgroups 
(ignoring the fact that the set was chosen in a data-
driven manner).

Type 4 (Biomarker and subgroup discovery): This 
includes data mining of large sets of available candidate 
biomarkers and is not limited to those anticipated as 
potential predictors prior to data unblinding. Tradition-
ally, false positive rates are not controlled and external 
validity is established using cross-validation or repli-
cation based on independent data sets. In some cases, 
however, some form of the overall Type I error rate con-
trol or the false discovery rate control is incorporated 
(this approach will be advocated later in this article). 

The main goal of this article is to touch upon 
key issues arising in subgroup analysis and statisti-
cal methods used in this area. Section 2 provides an 
overview of general principles of exploratory subgroup 
analysis in the broad sense that covers Types 2, 3 
and 4. Type 1 (confirmatory subgroup analysis) will 
be discussed in Section 3. For an in-depth review of 
statistical approaches to exploratory and confirmatory 
subgroup investigations, see for example Ondra et al. 
(2016), Henderson (2016), Lipkovich, Dmitrienko and 
D’Agostino (2017) and Lamont et al. (2018).

2. EXPLORATORY SUBGROUP ANALYSIS
The term “exploratory subgroups analysis” is often 
used to cover a variety of situations when subgroups 
are evaluated without strictly controlling the Type I 
error rate. In this section, we will refer to exploratory 
subgroup investigation in a broad sense, i.e., Types 2, 3 
and 4 of subgroup analysis defined in the Introduction. 

Key principles of exploratory subgroup analyses

The EMA guideline on subgroup analysis (EMA, 
2014) provides useful points to consider when planning 
subgroup investigation activities. Briefly, the guideline 
attempts to discourage trial sponsors from making wrong 
decisions at two extremes. The guideline warns against 

dismissing subgroup analysis, which is seen in the context 
of current practices often “creating disincentive to prop-
erly plan the investigation of subgroups,” and also warns 
against “reckless” subgroup analysis (that does not exer-
cise caution). In particular, the EMA guideline encourages 
discussion about potential subgroups at the trial design 
stage arguing that done properly, “this should minimize 
the need for data-driven investigations, relying instead on 
a well-reasoned pre-specified strategy.”

However, the guideline does not seem to recognize 
that a data-driven subgroup investigation strategy can also 
be principled (and even pre-specified) and the guideline 
fails to connect this principled approach with a wealth of 
relevant methods that have been developed in the areas 
such as statistical learning, causal inference and multiple 
testing. Indeed, we have witnessed a surge of publications 
on data-driven subgroup analysis coming from a cross-
fertilization of these areas. This is not surprising if we 
take a view that data-driven subgroup analysis is a special 
case of model selection in the presence of a large number 
of biomarkers. In this situation, one of the challenges of 
modeling is that it aims at studying the causal treatment 
effect at the individual patient level, which is unobserv-
able, except with a cross-over design. 

The key principles of principled subgroup analysis 
can be extracted from the fields mentioned above. Here 
we present a brief list. A detailed discussion of these 
topics can be found in Lipkovich, Dmitrienko and 
D’Agostino (2017). 

•	 Applying complexity control to prevent data over-
fitting and selection bias, e.g., bias due to select-
ing the best patient subgroup from a large set of 
candidate biomarkers (patient characteristics) and 
associated cutoffs. Tuning parameters control-
ling the subgroup search process often need to 
be determined in a data-driven fashion, e.g., via 
cross-validation.

•	 Evaluating the Type I error rate for the entire sub-
group search strategy, e.g., by using resampling 
under the null hypothesis of no subgroup effects. 
Subgroup analyses are often performed in clinical 
trials using a multi-stage strategy as described in 
the Introduction where a multiplicity correction 
is applied to the last stage but is not applied at 
earlier stages.
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•	 Obtaining “honest” estimates of the treatment 
effect within identified subgroups, which are 
expected if evaluated in an independent (future) 
data set. In the absence of independent data 
this can be approximated by using resampling 
methods or Bayesian model averaging/Empirical 
Bayes. Again, uncertainty associated with the sub-
group identification should be taken into account.

Complex subgroup identification strategies with 
built-in multiplicity and complexity control have been 
successfully applied both prospectively and retrospec-
tively across Phase II and III development programs. 
Prospective strategies rely on selecting biomarkers 
in a Phase II trial and use them to set up enrichment 
designs in Phase 3 trials. For example, this strategy 
was employed in the LAVOLTA I and LAVOLTA II 
trials which will be described in Section 3. Retrospec-
tive exploratory subgroup analyses are often conducted 
in failed Phase III trials to help identify one or more 
promising subgroups with a beneficial treatment effect. 
A retrospective subgroup identification strategy was 
used to discover subgroups with enhanced treatment 
effect based on 27 baseline covariates in the ATTAIN 
program for the treatment of nosocomial pneumonia, 
see Dmitrienko et al. (2015).
Typology of exploratory subgroup analysis methods

Following Lipkovich, Dmitrienko and D’Agostino (2017), 
we briefly outline four classes of methods that emerged in 
the recent literature on data-driven subgroup analysis.

Global outcome modeling
This approach assumes that outcome models in the treat-
ment and control arms are estimated from the clinical 
trial data. A single regression model incorporating both 
main (prognostic) effects and treatment by covariate 
interactions (predictive effects) or separate models by 
treatment arm may be used. Constructing patient sub-
groups typically requires multi-stage procedures. As an 
example, the global outcome model may be estimated 
at the first stage using a “black box” model (Neural net-
work, Random forest, Gradient boosting) and used at the 
second stage to compute hypothetical individual treatment 
differences. These are, in turn, used as outcomes and mod-
eled using appropriate predictive modeling methods, e.g., 
classification and regression trees, to select biomarkers 
predictive of treatment response and associated patient 

subgroups. The Virtual twin method introduced in Fos-
ter et al. (2011) serves as an example of global outcome 
modeling strategies.
Global treatment effect modeling
Approaches of this class obviate the need to fit prognos-
tic effects that “cancel out” in the course of modeling. 
As a result, modeling may be more robust as it is not 
prone to misspecification of prognostic effects. Some 
methods in this class rely on the machinery of classi-
fication and regression trees while replacing the usual 
splitting criteria which encourage splits resulting in the 
largest reduction in node impurity with splits aimed at 
maximizing the treatment by split interaction. An exam-
ple of a global treatment effect modeling strategy is the 
Interaction tree method introduced in Su et al. (2009).
Modeling individual treatment regimes (ITR)
Broadly, this class includes any approach that deter-
mines, based on patient level data, a rule determining 
for any given patient which candidate treatment is more 
likely to result in a better response as compared to other 
treatments. An important subclass of ITR methods casts 
the task of identifying optimal treatment rule as a clas-
sification problem where the goal is predicting the sign 
of the hypothetical treatment difference (i.e., if positive, 
assign a patient to the experimental treatment and, if 
negative, to the control). Methods of this class were pio-
neered by the Outcome-Weighted Learning approach of 
Zhao et al. (2012).
Local modeling (direct subgroup search)
The last class of subgroup evaluation methods focuses 
on a direct search for treatment-by-covariate interac-
tions and then selecting subgroups with desirable char-
acteristics, e.g., subgroups with an improved treatment 
effect. This approach obviates the need to estimate the 
response function over the entire covariate space and 
focuses on identifying specific regions with a large 
differential treatment effect. Unlike brute-force search 
methods used in computer science, local modeling 
methods often incorporate complexity control and 
multiplicity adjustments. Examples include extensions 
of “bump hunting” to subgroup analysis by Chen et al. 
(2015) and SIDES and related methods (see Lipkovich 
et al., 2011; Lipkovich and Dmitrienko, 2014; and Lip-
kovich et al., 2017).
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 3. CONFIRMATORY SUBGROUP 
ANALYSIS
As explained in the introduction, confirmatory sub-
group analysis methods focus on problems with a small 
set of pre-specified subgroups in pivotal clinical trials, 
which includes the overall trial population and several 
prospectively defined subpopulations. In this section, 
we will describe the general class of multi-population 
trials and a number of relevant topics such as the choice 
of multiplicity adjustments in traditional multi-popu-
lation trials and decision rules in adaptive trials with 
population selection.
Multi-population trials

Confirmatory subgroup analysis commonly arises in 
pivotal trials aimed at the development of targeted 
therapies. In this case, one or more subsets of the overall 
population are defined using binary classifiers derived 
from baseline patient characteristics (biomarkers) and 
where the treatment benefit is expected to be stronger 
in these subpopulations than in the overall population. 
The subpopulations are often referred to as target sub-
populations.

The APEX trial (Cohen et al., 2016) serves an exam-
ple of a multi-population trial with two target subpopu-
lations. This trial was conducted in the population of 
patients at risk for venous thrombosis and was designed 
to evaluate the efficacy and safety of betrixaban com-
pared to an active control. The target subpopulations 
were defined using the baseline values of two variables/
biomarkers (patient’s age and D-dimer level) which 
were believed to be predictive of treatment response. 
Incorporating the subpopulations into the primary anal-
ysis would help the trial sponsor better characterize the 
efficacy profile of betrixaban. 
Multiplicity adjustments

A key feature of any multi-population trial is that an 
effectiveness claim can be made in the overall trial 
population as well as in any of the target subpopula-
tions. This leads to Type I error rate inflation and thus to 
control the overall Type I error rate with respect to the 
corresponding null hypotheses of no effect, a multiplic-
ity adjustment must be applied. 

A comprehensive overview of multiplicity adjust-
ment strategies utilized in pivotal clinical trials is 
provided in Dmitrienko and D’Agostino (2013, 2018). 

Numerous multiple testing procedures are available 
(e.g., nonparametric, semiparametric or fully parametric 
procedures) to protect the overall Type I error rate in 
multi-population trials and it is important to select the 
most appropriate procedure for a given trial. The pro-
cess of carefully evaluating the available multiplicity 
adjustment options can be facilitated by an application 
of the Clinical Scenario Evaluation (CSE) approach 
(Benda et al., 2010).

To illustrate the importance of a thorough evaluation 
of multiplicity adjustments, we will consider the APEX 
trial with three pre-defined patient populations. A sim-
ple fixed-sequence testing approach was pre-planned in 
this trial and the patient populations were to be tested 
sequentially beginning with the smallest subpopulation. 
The treatment effect was not significant within this sub-
population and due to the inflexible testing approach, 
the trial’s overall outcome was declared negative. This 
testing strategy serves as an example of a multiplicity 
adjustment that imposes unnecessary restrictions on the 
population-specific significance tests. Patient popula-
tions ought to be treated as interchangeable rather than 
hierarchically ordered. For this reason, multiplicity 
adjustments that rely on a flexible data-driven testing 
sequence (e.g., the Hochberg procedure) are recom-
mended. Secondly, instead of focusing on a single 
multiplicity adjustment, the CSE approach encourages 
trial sponsors to select a set of applicable candidate 
adjustments and carefully evaluate them to identify the 
most efficient adjustment that performs well under a 
broad range of treatment effect assumptions (including 
the scenarios where the biomarkers of interest are non-
informative, i.e., they do not predict treatment benefit). 
Examples of CSE-based evaluations of multiplicity 
adjustments in multi-population trials can be found in 
Dmitrienko and Paux (2017).
Decision-making framework

While multiplicity adjustments provide a foundation for 
valid statistical inferences in multi-population trials, they 
do not guarantee a logically consistent set of conclusions. 
An additional set of conditions should be imposed to 
facilitate the interpretation of subgroup analysis results 
in trials with several patient populations. 

This point can be illustrated using the SATURN trial 
that investigated the use of erlotinib as maintenance 
therapy in patients with advanced non-small-cell lung 
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cancer (Cappuzzo et al., 2010). The primary analysis 
in this trial was performed in the overall population 
as well as a subpopulation of patients with a positive 
EGFR (epidermal growth factor receptor) immuno-
histochemistry status. Progression –free survival was 
the endpoint evaluated in the primary analysis in both 
patient populations. The treatment effect turned out to 
be significant in the overall population as well as in the 
subset of EGFR-positive patients. However, as pointed 
out by Rothmann et al. (2012), it is premature to con-
clude that erlotinib provided benefit in the overall popu-
lation since it is possible that the significant outcome in 
the overall population was driven by a strong treatment 
effect within the target sub population. 

To ensure appropriate inference in multi-population 
settings, Millen et al. (2012) introduced the influence 
and interaction conditions. The influence condition 
states that in order to claim effectiveness in the overall 
population, a beneficial treatment effect in this popula-
tion must not be limited to the target subpopulation. This 
implies that the treatment benefit in the overall popula-
tion is not explained solely in terms of a strong treatment 
effect in the subpopulation. Furthermore, the interaction 
condition applied to settings where the trial sponsor 
would like to make effectiveness claims simultaneously 
in the overall population and target subpopulation. If the 
influence condition is satisfied, the interaction condition 
states that in order to support both effectiveness claims, 
the treatment effect in the target subpopulation should 
be appreciably greater than the treatment effect in the 
complement of the subpopulation.

The original influence and interaction conditions 
were formulated using a simple frequentist approach 
and were later expanded to incorporate Bayesian argu-
ments. The decision-making framework based on these 
conditions has been applied to several multi-population 
trials with traditional and adaptive designs.

Adaptive population selection trials
So far we have focused on multi-population tri-

als with a fixed design where the total sample size 
or target number of events in a trial is pre-specified. 
The multi-population framework has been successfully 
extended to designs with data-driven decision rules. 
These are known as either adaptive population selec-
tion designs or adaptive enrichment designs (FDA, 
2018). In what follows, we will discuss well-established 
adaptive designs aimed at evaluating treatment benefits 

in a set of subpopulations that are defined at the trial 
design stage as well as more advanced designs that are 
built around data-driven subpopulations selected at an 
interim analysis.

Beginning with adaptive designs that rely on a set of 
pre-specified subpopulations, a multi-population adap-
tive trial with a single interim analysis can be designed 
to evaluate the treatment effect within each subpopula-
tion at the interim look and identify the most promising 
sub-populations. The final analysis is then conducted 
within the selected sub-populations using the data col-
lected before and after the interim analysis. In addition, 
the number of patients or events can be appropriately 
increased in the overall population or within a target 
sub-population if the treatment effect at the final analy-
sis is projected to be borderline non-significant. Most 
commonly, trials with either adaptive subpopulation 
selection or other data-dependent rules rely on the com-
bination function principle, which guarantees overall 
Type I error rate control. A detailed example of an adap-
tive multi-population trial with flexible decision rules is 
provided in Brannath et al. (2009). 

For evaluating the overall population, the resulting 
adaptive approach offers several advantages compared 
to a traditional design. As stated in the FDA guidance 
on adaptive designs (FDA, 2018), adaptive designs are 
likely to provide a power advantage over traditional 
designs In addition, the adaptive approach offers a 
certain level of protection against incorrect selection 
of target subpopulations or misspecification of the 
treatment effect assumptions in Phase III development 
programs. It is well known that it is challenging to reli-
ably assess the predictive properties of a promising bio-
marker in Phase II trials, mostly due to their small size. 
For example, a continuous biomarker (serum periostin) 
was developed as a predictor of treatment response in 
asthma populations and showed considerable promise 
in a Phase II trial in patients with uncontrolled asthma 
(Corren et al., 2011). This Phase II trial was conducted 
to investigate the efficacy of lebrikizumab and a strong 
treatment effect was detected in the periostin-high 
subgroup (biomarker-positive patients) whereas there 
was no evidence of efficacy in the complementary 
subgroup (biomarker- negative patients). Two large 
Phase III trials using traditional designs with a fixed 
sample size (LAVOLTA I and LAVOLTA II) were 
conducted to confirm the subgroup findings (Hanania 
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et al., 2016). However, the enhanced efficacy signal 
in the biomarker-positive subgroup was not observed 
consistently. In particular, a significant treatment effect 
was found in the biomarker-positive subgroup for the 
LAVOLTA I trial but the treatment difference in the sub-
group was borderline non-significant in the other trial.

A natural extension of adaptive designs with fully 
pre-specified subpopulations is a class of more advanced 
designs where patient subpopulations are partially defined 
at the beginning of the trial (i.e., predictive biomarkers are 
known but the rules for defining patient subgroups may 
not be specified). Using the lebrikizumab example with a 
continuous biomarker, consider the problem of selecting 
the subset of biomarker-positive patients for pivotal phase 
III trials. Cut points for continuous biomarkers are typi-
cally estimated from small Phase II trials. Since Phase III 
trials tend to be larger than Phase II trials, an alternative 
approach would be to introduce an interim analysis in a 
Phase III trial and use the interim analysis results to iden-
tify an optimal cut point. The subpopulation corresponding 
to this cut point could then be analyzed at the final look as 
if it was pre-planned at the trial design stage. 

One of the first attempts to build designs with data-
driven subpopulations for pivotal trials was proposed 
by Freidlin and Simon (2005); however, the proposed 
approach discarded the data collected before the interim 
look. More recently, more powerful methods have been 
developed to perform valid inferences in data-driven sub-
groups by pooling the subgroup data before and after the 
interim look (see Graf et al., 2019). This general inferential 
framework can be extended to more complex settings. For 
example, the trial sponsor can identify a set of candidate 
biomarkers and apply a principled subgroup identification 
method (see Section 2) to choose the strongest predictor 
of treatment benefit and associated target subpopulation 
at the interim analysis. The treatment effect will then be 
estimated within the overall trial population as well as in 
the selected subpopulation using an appropriate multiplic-
ity adjustment. 

4. DISCUSSION
This article provides an overview of key considerations 
and methods in the evaluation of subgroup effects in late-
stage clinical trials. Multiple patient subgroups are typi-
cally examined in Phase II and Phase III clinical trials and 
it is critical to identify appropriate statistical methods that 

are aligned with the goals of subgroup analyses, e.g., data-
driven or confirmatory subgroup analyses.

In the context of data-driven subgroup analysis, 
depending on the scope of subgroup investigation, we 
distinguish among the traditional exploratory analy-
sis in clinical trials, post-hoc analysis and subgroups/
biomarker discovery. Multiple statistical methods have 
been proposed recently for unplanned subgroup analy-
sis and we would like to emphasize the importance of 
a principled approach to subgroup exploration. This 
class of methods is the result of a cross-fertilization 
of efforts form machine learning, causal inference and 
multiple testing. Within the principled subgroup analy-
sis framework, complexity and error rate control should 
be implemented using resampling methods to allow the 
trial’s sponsor to account for the uncertainty in com-
plex multi-stage biomarker/subgroup search strategies. 
Treatment effects within the identified subgroups (or the 
improvement in overall outcomes resulting from apply-
ing estimated individual treatment regimes) should be 
estimated by methods that account for selection bias. 

Multiplicity adjustments play a key role in confirma-
tory subgroup analysis settings (in fact, multiplicity 
adjustments are mandatory in pivotal Phase III trials 
with multiple patient populations). When comparing 
the available multiplicity adjustment options in a multi-
population trial, it is important to identify an adjustment 
that performs best in the context of a given trial and is 
also robust against deviations from the original treat-
ment effect assumptions. In addition, increasingly more 
sophisticated adaptive designs are available to support 
the investigation of subgroup effects in pivotal trials. 
These designs incorporate flexible data-driven decision 
rules, such as discontinuation of patients or selection 
of the best subpopulations from a set of candidate sub-
populations, and enable valid statistical inferences that 
do not compromise Type I error rate control.

The use of appropriate designs and methods will 
allow for a better understanding of treatment response, 
for more efficient regulatory review and will ultimately 
provide greater benefit to the patients through reliable 
knowledge in tailored therapeutics. 
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Mentorship within the American Statisti-
cal Association (ASA) began not long ago with 
the Committee on Applied Statisticians (CAS) being 
advanced in providing resources for this program to 
its members. Following the Committee on Applied 
Statisticians blueprint, the Biopharmaceutical (BIOP) 
Section created the BIOP Section Mentoring Committee 
to coordinate mentorship of junior colleagues by expe-
rienced statisticians within the section. The mentoring 
program was introduced by the ASA as added benefit to 
its members. BIOP Section was the first Section to start 
the mentoring program following the blueprint created 
by the committee on applied statisticians (CAS).

The BIOP Section Mentoring Program was launched 
in 2014. Since its launch, the program has seen partici-
pation from over a hundred mentees. For these years the 
interest has been growing among Biopharm members 
and potential mentees/mentors. On the other hand, sur-
veys administered by the mentoring committee during 
each year’s program have revealed that some mentoring 
partners did not have sustained contacts after the initial 
meeting through the end of the program. In order to have 
continuity of the program, it is necessary to provide 
incentives, to encourage volunteers and promote active 
participations in future years. The program has gained 
popularity as we have participants from outside USA – 
mentee/mentor from outside USA. As the years go by, 
more and more people have participated in the program.

THE FIRST INITIAL YEARS 2014-2016 

Amajor Kaur together with Jennifer Gauvin served as 
chair of CAS for multiple years and were part of the 
mentoring initiative/pilot. The activities of the first three 
years (2014-2016) set the stage for the program. These 
activities included creation of an email account for com-
munication about planned activities to target audience. 

OVERVIEW OF BIOPHARMACEUTICAL SECTION 
MENTORING ACTIVITIES FROM  
LAUNCH TO PRESENT DAY
BRIEF INTRODUCTION & BACKGROUND
Juliet Ndukum

Putting together useful 
information in form of 
a welcome package to 
be shared to all mentee/
mentor pairs. The docu-
ment (welcome pack-
age) modified from 
CAS to suit BIOP 
Section commu-
nity provides infor-
mation to mentee/
mentor pairs about 
program expecta-
tions. In order to 
gauge interaction 
and interest in the 
program, a survey was created. This 
survey is administered twice during the program. 
Another survey also aids in pairing mentees to mentors. 
A series of meetings and events were planned, and held 
with the purpose of bringing about awareness of the 
program to the BIOP Section community.  There was a 
focus on mentoring at JSM 2016 with talks on mentor-
ing. Because of this interest, the committee published 
an article to highlight the importance of the program to 
the BIOP Section community in the September edition 
of AMSTATNEWS.

ACTIVITIES OF THE COMMITTEE 

The mentoring committee advertises solicits interest in 
the program by advertisement through various channels 
e.g., BIOP email/newsletter/business meeting at JSM, 
JSM mixer, AMSTATNEWS, and STATtr@k. Individu-
als who indicate an interest have to do confirm their 
BIOPiopharm membership as a first step to participat-
ing in the program. Each mentee is matched with a 

The Membership Magazine of the American Statistical Association • http://magazine.amstat.org  

AMSTATNEWS
September 2016 • Issue #471

Influential Mentors
Mentoring

Member Q&A
Mentoring Programs

September2016.indd   1
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mentor. The matching process is based on their goals, 
learning objectives from the mentoring program, work-
ing background,  and time geographic location of both 
mentee and mentor. The mentor/mentee pairing process 
is facilitated by an uptake survey where each interested 
participant fills out to provides the necessary informa-
tion on the questions asked in the survey. The commit-
tee then uses the feedback from the survey as a guide 
to provide the best possible matching pairs. The timing 
of the pairing is such that, both mentor and mentee can 
have a first meeting during JSM of that year. Once a 
mentee is matched to a mentor, the new mentor/mentee 
pair are informed by email with a welcome package 
provided as attachment. The committee encourages at 
least one face-to-face meeting for example during JSM 
or another conference, if possible, that is not withstand-
ing other forms of communication (email, text, talk, 
teleconferencing) or a combination thereof. During the 
midyear, a follow-up email is sent to mentor-mentees to 
keep them engaged in the program and also to remind 
them about their ongoing communications responsibili-
ties, etc. The committee envisages planning a session at 
the 2019 FDA Statistics Workshop and improve upon 
the BIOP website about the program and its activities.

ACTIVITY, EVALUATION & 
DISSEMINATION 

The BIOP mentorship program runs from August to 
July in the following year where the mentoring com-
mittee members matches interested mentees to mentors 
and continues following up with the matching pairs 
through the year. After the initial match, participants 
receive two surveys In March/April following the initial 
match, while they are in the program, another survey 
is emailed to participants. The survey is intended to 
capture progress of the mentoring program, interaction 
as well as interest. Additionally, the midyear survey 
administered is intended to evaluate the activities of the 
program based on the responses of the mentee/mentor 
pairs. The feedback from the survey is used to identify 
areas of improvement within the program. Although 
not a requirement, a mentee/mentor pair may opt to 
continue with the communication after the mentoring 
program has ended. Furthermore, a mentee may have 
interest to be matched with a mentor for the next year 
of the program. Towards the end of each mentoring 

session, a final survey is again administered to the par-
ticipants. As before, it is intended to capture the same 
attributes, as the previous and identify lapses, if, any, 
in the program. The information from both surveys are 
used to identify areas of improvement and innovation 
within the program. These lapses, again, provide room 
for improvement and innovation. At the end of the pro-
gram each year, a report is presented at the Executive 
Committee of the BIOP Section, a summary published 
in the BIOP newsletter.

ACTIVITIES POST LAUNCH OF THE 
PROGRAM 

The activities post the initial three years have been var-
ied . The BIOP Section Mentoring Committee is writ-
ing this report to create awareness of the program and 
milestones including successes of the program to BIOP 
Section and ASA as a whole and our noble profession. 
The mentor participation in the BIOP Section mentoring 
program has been low compared to the number of men-
tees seeking mentorship. To facilitate this high demand 
for mentorship in our Section, in 2015 and 2016, the 
BIOP Section Mentoring Committee members, with the 
consent of mentors, assigned multiple mentees to some 
individual mentors. The presence of mentors is needed 
to guarantee continuity of the program. (Mentor par-
ticipation was low, this year as well.) This year, at JSM 
2018, the Executive Committee (EC) brought the idea 
to the attendees at the BIOP Section Business Meeting 
and Mixer in Vancouver.

RECOGNITION OF ALL MENTORS  
TO DATE 

By mentoring a junior colleague, the mentor under-
stands the junior colleague’s professional development 
needs, and serves as a valuable resource for the mentee 
for technical issues and career-related challenges to 
name a few. A mentor may spend a substantial amount 
of time to address requests from mentees. Because of 
the efforts mentors put in and the advice they give to the 
mentee. the BIOP Section Mentoring Committee would 
like to thank all senior colleagues who have served on 
the program as mentors at some point in time since the 
launch of this program.  n
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The Alzheimer’s Disease Scientific Working 
group has been making steady progress. The Disease 
Modification and the Pre-symptomatic Work Stream are 
currently developing review white papers to   help better 
understand the approaches that have been used/proposed 
to demonstrate disease modifying effects and to utilize 
appropriate measures for pre-symptomatic trials.

Due to the urgency of the estimands topic, our Esti-
mand Working Stream has been especially busy. Listed 
below are some of the key activities of this group:

1.	 Organizing a symposium at Clinical Trials for 
Alzheimer’s Disease (CTAD) to educate the 
AD field on the framework of estimand. Key 
clinical opinion leaders and the FDA Director 
of Neurology Division participated in the panel 
discussion; 

2.	 Presenting at the Statisticians in the Pharma-
ceutical Industry (PSI) and the Alzheimer’s 
Association International Conference (AAIC) on 
simulation results focusing on the performance 
of estimands and estimating methods;

3.	 Organizing a statistical workshop at the AAIC to 
further educate the broader research community 
on estimands and specific considerations dealing 
with intercurrent events: and  

4.	 Planning to host one of the webinars in the DIA 
estimand series “Getting the questions right,” to 
share learning and best practice associated with 
cross-disciplinary groups in order to effectively 
implement and utilize estimands in CTs and in 
drug development.

Earlier this year we also participated in a session 
at DIA/FDA Statistics Forum to discuss the chal-
lenges and opportunities in AD drug development and 
research, and what we, as statisticians, can do to “lead 
the charge.” It was a productive discussion between 

statisticians and clinicians, including regulators, and it 
clearly demonstrated the commitment coming from 
cross-sector efforts to fight this devastating disease. 

Additionally, working with Richard Zink, we 
described Alzheimer’s Disease research challenges 
and the activities of the AD_SWG on the latest Bio-
pharmaceutical Sections podcast. n

ALZHEIMER'S DISEASE SCIENTIFIC 
WORKING GROUP UPDATES
Hong Liu-Seifert and Steve Wilson, The Alzheimer's Disease Scientific Working Group

PODCAST | Episode 59: Alzheimer's 
Disease Scientific Working Group 

In the latest Biopharmaceutical 
Section Podcast Hong Liu-
Seifert and Steve Wilson discuss 
the challenges of developing 
new treatments for Alzheimer's 
Disease and the formation of 
the scientific working group.

https://community.amstat.org/biop/home
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NONCLINICAL BIOSTATISTICS 
CONFERENCE 2019
NONCLINICAL BIOSTATISTICS – ADVANCING 
DRUG DEVELOPMENT FROM DISCOVERY TO 
COMMERCIALIZATION

The sixth ASA-BIOP Nonclinical Biostatistics 
Conference is set to take place at Rutgers University 
in New Brunswick, NJ from June 17 – 19, 2019. The 
conference is dedicated entirely to nonclinical biosta-
tistics topics with four organized sections for CMC/
Manufacturing, drug discovery/biomarkers, safety/
pharmacology, and statistical computing and visualiza-
tions. Attendees will have ample opportunity to net-
work, share experiences, and discuss current scientific 
issues with colleagues and leaders in the field. The 
conference features the ASA Presidential speech from 
ASA president-elect Dr. Karen Kafadar (UVA) and a 
keynote address from Dr. Jose Pinheiro (J&J). In addi-
tion, two short courses are offered for the conference 
: (1) An R shiny tutorial with nonclinical applications 
with instructors Max Kuhn and Phil Bowsher (RStu-
dio) and (2) Getting it right: Composition analysis of 
biological measurements with instructors Anthony 
Lonardo (Lonardo StatReg Associates) and Juan Jose 
Egozcue and Maribel Ortego (Dept. Civil and Envi-
ronment Engineering, Universitat Politecnica de Cata-
lunya). Special programming and events are underway 
for graduate students, including a student poster contest. 
The NCB student outreach is currently coordinating 
with several universities to interact with and educate 
graduate students on the role of nonclinical biostatistics 
in the pharmaceutical industry. Further, the 2019 Best 
Nonclinical Paper Biostatistics Award will be bestowed 
upon the winner at the conference. Submissions for best 
paper are accepted up until March, 2019. The organiz-
ing committee is preparing a full agenda of invited and 
contributing speakers that will be selected in the coming 
months. Look for registration to open in early 2019. On 
behalf of the conference organizing committee, we look 
forward to seeing you there! -- Steven Novick

Visit the conference website: http://community.
amstat.org/biop/events/ncb/index

Visit the NCB student outreach website:  
http://community.amstat.org/biop/working-
groups/ncbwg/students

Visit the Best non-clinical biostatistics paper web-
site: http://community.amstat.org/biop/working-
groups/ncbwg/awards


