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“It’s been an enormously 
difficult, complicated 
slog, and it’s far more 
complicated and involved 
than we thought it would 
be, but it is a huge deal.”

Nathaniel Fairfield,  

distinguished software 
engineer and leader of the 
‘behavior team’ at Waymo, 
December 2019 [1]
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Introduction
Bram Geenen 

Editor in Chief, 
CEO of Wevolver

Motorized transportation has changed 
the way we live. Autonomous vehicles 
are about to do so once more. This 
evolution of our transport - from hors-
es and carriages, to cars, to driverless 
vehicles, - has been driven by both 
technical innovation and socioeco-
nomic factors. In this report we focus 
on the technological aspect.

Looking at the state of autonomous 
vehicles at the start of the 2020s we 
can see that impressive milestones 
have been achieved, such as compa-
nies like Waymo, Aptiv, and Yandex 
offering autonomous taxis in dedicat-
ed areas since mid-2018. At the same 
time, technology developers have run 
into unforeseen challenges.

Some industry leaders and experts 
have scaled back their expectations, 
and others have spoken out against 
optimistic beliefs and predictions.[2,3] 
Gartner, a global research and advi-
sory firm, weighs in by now placing 
‘autonomous vehicles’ in the Trough of 
Disillusionment of their yearly Hype 
Cycle.[4]

The engineering community is less 
affected by media hype: Over 22% of 
the engineers visiting the Wevolver 
platform do so to gain more knowl-
edge on autonomous vehicle technol-
ogy.[5] Despite how much topics like 
market size and startup valuations 
have been covered globally by the 
media, many engineers have ex-
pressed to our team at Wevolver that 
comprehensive knowledge to grasp 
the current technical possibilities is 
still lacking. 

Therefore, this report’s purpose is to 

enable you to be up to date and un-

derstand autonomous vehicles from a 

technical viewpoint. 

We have compiled and centralized the 
information you need to understand 
what technologies are needed to 
develop autonomous vehicles. We will 
elaborate on the engineering consid-
erations that have been and will be 
made for the implementation of these 
technologies, and we’ll discuss the 
current state of the art in the industry. 

This reports’ approach is to describe 
technologies at a high level, to offer 
the baseline knowledge you need to 
acquire, and to use lots of references 
to help you dive deeper whenever 
needed. 

Most of the examples in the report 
will come from cars. However, indi-
vidual personal transportation is not 
the only area in which Autonomous 
Vehicles (AVs) will be deployed and 
in which they will have a significant 
impact. Other areas include public 
transportation, delivery & cargo and 
specialty vehicles for farming and 
mining. All of these come with their 
own environment and specific usage 
requirements that are shaping AV 
technology. At the same time, all of 
the technologies described in this re-
port form the ingredients for autono-
my, and thus will be needed in various 
applications.

How this report 
came to be:  
a collaborative 
effort
Once the decision was made to create 
this report, we asked our communi-
ty for writers with expertise in the 
field, and for other experts who could 
provide input. A team of writers and 
editors crafted a first draft, leveraging 
many external references. Then, in a 
second call-out to our community we 
found many engineers and leaders 
from both commercial and academic 
backgrounds willing to contribute 
significant amounts of their time 
and attention to providing extensive 
feedback and collaborating with us 
to shape the current report through 
many iterations. We owe much to 
their dedication, and through their 
input this report has been able to 
incorporate views from across the 
industry and 11 different countries.

Because this field continues to 
advance, we don’t consider our work 
done. We intend to update this report 
into new editions regularly as new 
knowledge comes available and our 
understanding of the topic grows. 
You are invited to play an active role 
and contribute to this evolution, be it 
through brief feedback or by submit-
ting significant new information and 
insights to our editorial team (info@
wevolver.com), your input is highly 
appreciated and invaluable to further 
the knowledge on this topic.

This report would not have been 
possible without the sponsorship of 
Nexperia, a semiconductor company 
shipping over 90Bn components an-
nually, the majority of which are with-
in the automotive industry. Through 
their support, Nexperia shows a 
commitment to the sharing of objec-
tive knowledge to help technology 
developers innovate. This is the core 
of what we do at Wevolver.

The positive impact these technol-
ogies could possibly have on both 
individual lives, and our society and 
planet as a whole are an inspiring 
and worthwhile goal. At Wevolver 
we hope this report provides the 
information and inspiration for you in 
any way possible to be a part of that 
evolution.
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William Gibson,

Science fiction writer, 

April 2019 [12]

“Autonomous vehicles 
are already here – they’re 
just not very evenly 
distributed.”
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System supports you driving.

Steering OR speed
are automated.

NO AUTOMATION

0

DRIVER ASSISTANCE

1

PARTIAL AUTOMATION

2

You monitor the environment. You are the driver, 

even when automation features are turned on.

Steering AND speed are automated.

CONDITIONAL AUTOMATION

3

Z
Z

Z

HIGH AUTOMATION

4

FULL AUTOMATION

5

When system requests, 

you must take control.

conditions are met.

System operates in all 

conditions

No requirement for you to take over control.

Levels of Autonomy
When talking about autonomous ve-
hicles, it is important to keep in mind 
that each vehicle can have a range of 
autonomous capabilities. To enable 

the Society Of Automotive Engineers 
(SAE) International established its 
SAE J3016™ “Levels of Automated 
Driving” standard. Its levels range 
from 0-5 and a higher number des-
ignates an increase in autonomous 
capabilities.[6] 

Level 0 (L0):  

No automation

Level 1 (L1):  

Advanced Driver Assistance Sys-
tems (ADAS) are introduced: fea-
tures that either control steering 
or speed to support the driver. For 
example, adaptive cruise control 
that automatically accelerates and 
decelerates based on other vehi-
cles on the road. 

Level 2 (L2):  

Now both steering and accelera-
tion are simultaneously handled 
by the autonomous system. The 
human driver still monitors the 
environment and supervises the 
support functions. 

Levels of driving automation summary.  
Adapted from SAE by Wevolver. [6]

Level 3 (L3):  

Conditional automation: The sys-
tem can drive without the need 
for a human to monitor and re-
spond. However, the system might 
ask a human to intervene, so the 
driver must be able to take con-
trol at all times. 

Level 4 (L4):  

These systems have high auto-
mation and can fully drive them-
selves under certain conditions. 
The vehicle won’t drive if not all 
conditions are met. 

Level 5 (L5):  

Full automation, the vehicle can 
drive wherever, whenever. 

14 15
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The context and environment (in-
cluding rules, culture, weather, etc.) 
in which an autonomous vehicle 
needs to operate greatly influences 
the level of autonomy that can be 
achieved. On a German Autobahn, the 
speed and accuracy of obstacle de-
tection, and the subsequent decisions 
that need to be made to change the 
speed and direction of the vehicle 
need to happen within a few milli-
seconds, while the same detection 
and decisions can be much slower 
for a vehicle that never leaves a 
corporate campus. In a similar matter, 
the models needed to drive in sunny 
Arizona are more predictable than 
those in New York City, or Banga-
lore. That also means an automated 
driving system (ADS) capable of L3 
automation in the usual circumstanc-
es of e.g. Silicon Valley, might need 
to fall back to L2 functionality if it 
would be deployed on snowy roads 
or in a different country. 

The capabilities of an autonomous 
vehicle determine its Operational 
Design Domain (ODD). The ODD 
defines the conditions under which 
a vehicle is designed to function and 
is expected to perform safely. The 
ODD includes (but isn’t limited to) 
environmental, geographical, and 
time-of-day restrictions, as well as 
traffic or roadway characteristics. 
For example, an autonomous freight 
truck might be designed to transport 
cargo from a seaport to a distribu-
tion center 30 Km away, via a specific 
route, in day-time only. This vehicles 
ODD is limited to the prescribed 
route and time-of-day, and it should 
not operate outside of it.[7–9]

Level 5 ADS have the same mobility 
as a human driver: an unlimited ODD. 
Designing the autonomous vehicle to 

be able to adjust to all driving sce-

narios, in all road, weather and traffic 
conditions is the biggest technical 

challenge to achieve. Humans have 
the capability to perceive a large 
amount of sense information and 
fuse this data to make decisions us-
ing both past experience and our im-
agination. All of this in milliseconds. 
A fully autonomous system needs to 
match (and outperform) us in these 
capabilities. The question of how to 
assess the safety of such a system 
needs to be addressed by legislators. 
Companies have banded together, 
like in the Automated Vehicle Safety 
Consortium, to jointly develop new 
frameworks for safety.[10]

Major automotive manufacturers, 
as well as new entrants like Google 
(Waymo), Uber, and many startups 
are working on AVs. While design 
concepts differ, all these vehicles rely 
on using a set of sensors to perceive 
the environment, advanced software 
to process input and decide the 
vehicle’s path and a set of actuators 
to act upon decisions. [11] The next 
sections will review the technologies 
needed for these building blocks of 
autonomy.

Because an autonomous vehicle oper-
ates in an (at least partially) unknown 
and dynamic environment, it simulta-
neously needs to build a map of this 
environment and localize itself within 
the map. The input to perform this 
Simultaneous Localization and Map-
ping (SLAM) process needs to come 
from sensors and pre-existing maps 
created by AI systems and humans.

Sensing

Road  

Markings

Traffic  
Lights

Street  

Signs

Lane  

Markings

Moving  

Objects

Static  

Objects

Example of the variety of static and 
moving objects that an autonomous 
vehicle needs to detect and distinguish 
from each other. Image: Wevolver, 
based on a photo by Dan Smedley.
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An example of typical sensors used to perceive the environment. Note that various vehicle 
manufacturers may use different combinations of sensors and might use all of the displayed 
sensors. For example, increasingly multiple smaller LIDAR sensors are being used, and long 
range backward facing RADAR can be incorporated to cover situations like highway lane 
changing and merging. The placing of the sensors can vary as well. Image: Wevolver

Cameras

IMU

GNSS

LIDAR

Long Range RADAR

Short / Medium

Range RADAR

Ultrasound

Ir Cameras

Environmental 
mapping

In order to perceive a vehicle’s direct 
environment, object detection sensors 
are used. Here, we will make a dis-
tinction between two sets of sensors: 
passive and active. Passive sensors 
detect existing energy, like light or 
radiation, reflecting from objects in 
the environment, while active sensors 
send their own electromagnetic 
signal and sense its reflection. These 
sensors are already found in automo-
tive products at Level 1 or 2, e.g. for 
lane keeping assistance. 

Passive sensors 

Due to the widespread use of object 
detection in digital images and vide-
os, passive sensors based on camera 
technology were one of the first 
sensors to be used on autonomous 
vehicles. Digital cameras rely on CCD 
(charge-coupled device) or CMOS 
(complementary metal-oxide semi-
conductor) image sensors which work 
by changing the signal received in the 
400-1100 nm wavelengths (visible to 
near infrared spectra) to an electric 
signal.[13,14] 

The surface of the sensor is broken 
down into pixels, each of which can 
sense the intensity of the signal 
received, based on the amount of 
charge accumulated at that location. 
By using multiple sensors that are 
sensitive to different wavelengths of 
light, color information can also be 
encoded in such a system.

While the principle of operation of 
CCD and CMOS sensors are similar, 
their actual operation differs. CCD 
sensors transport charge to a specific 
corner of the chip for reading, while 
each pixel in a CMOS chip has its own 
transistor to read the interaction with 
light. Colocation of transistors with 
sensor elements in CMOS reduces its 
light sensitivity, as the effective sur-
face area of the sensor for interaction 
with the light is reduced. 

This leads to higher noise susceptibil-
ity for CMOS sensors, such that CCD 
sensors can create higher quality im-
ages. Yet, CMOS sensors use up to 100 
times less power than CCDs. Further-
more, they’re easier to fabricate using 
standard silicon production processes. 

Most current sensors used for auton-
omous vehicles are CMOS based and 
have a 1-2 megapixel resolution.[15]

While passive CMOS sensors are 
generally used in the visual light 
spectrum, the same CMOS technology 
could be used in thermal imaging 
cameras which work in the infrared 
wavelengths of 780 nm to 1 mm. 
They are useful sensors for detection 
of hot bodies, such as pedestrians or 
animals, and for peak illumination 
situations such as the end of a tunnel, 
where a visual sensor will be blinded 
by the light intensity.[16] 

In most cases, the passive sensor 
suite aboard the vehicle consists of 
more than one sensor pointing in the 
same direction. These stereo camer-
as can take 3D images of objects by 
overlaying the images from the differ-
ent sensors. Stereoscopic images can 
then be used for range finding, which 
is important for autonomous vehicle 
application.
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Tetsuya Iijima, 
General Manager of Advanced Technology De-
velopment for Automated Driving, Nissan, 
May 2019 [20]

Bill Colleran, 
CEO, Lumotive,  
June 2019 [21]

Elon Musk, 
2017 [19]

“Let’s be candid, LIDAR is unaffordable in consumer 
vehicles, but if a lidar unit were available today 
that had good performance and was affordable, it 
would quietly show up in a Tesla car and this whole 
hubbub would go away.”

“At the moment, LIDAR lacks the capabilities to 
exceed the capabilities of the latest technology in 
radar and cameras.”

“Once you solve cameras for vision, autonomy is 
solved; if you don’t solve vision, it’s not solved 
… You can absolutely be superhuman with just 
cameras.”

The main benefits of passive sensors 
are[17]:

• High-resolution in pixels and 
color across the full width of its 
field of view.

• Constant ‘frame-rate’ across the 
field of view.

• Two cameras can generate a 3D 
stereoscopic view.

• Lack of transmitting source re-
duces the likelihood of interfer-
ence from another vehicle.

• Low cost due to matured tech-
nology.

• The images generated by these 
systems are easy for users to 
understand and interact with

Indeed, Tesla cars mount an array of 
cameras all around the vehicle to 
gather visual field information, and 
London based startup Wayve claims 
that its cars which only rely on pas-
sive optic sensors are safe enough for 
use in cities. The main shortcoming of 
passive sensors is their performance 
in low light or poor weather condi-
tions; due to the fact that they do not 
have their own transmission source 
they cannot easily adapt to these 
conditions. These sensors also gen-
erate 0.5-3.5 Gbps of data,[18] which 
can be a lot for onboard processing 
or communicating to the cloud. It is 
also more than the amount of data 
generated by active sensors.

If a passive camera sensor suite 
is used on board an autonomous 
vehicle, it will likely need to see the 
whole surrounding of the car. This can 

be done by using a rotating camera 
that takes images at specific inter-
vals, or by stitching the images of 4-6 
cameras together through software. 
In addition, these sensors need a high 
dynamic range (the ability to image 
both highlights and dark shadows in a 
scene), of more than 100 dB,[22] giving 
them the ability to work in various 
light conditions and distinguish be-
tween various objects. 

Dynamic range is measured in decibel 
(dB); a logarithmic way of describing 
a ratio. Humans have a dynamic range 
of about 200 dB. That means that in a 
single scene, the human eye can per-
ceive tones that are about 1,000,000 
times darker than the brightest ones. 
Cameras have a narrower dynamic 
range, though are getting better. 

The electromagnetic spectrum and its 
usage for perception sensors .[16]
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Signal in

Signal out

Distance measured

“We need more time for the car to re-
act, and we think imaging radar will be 
a key to that.”

Chris Jacobs, Vice President of Autonomous Transporta-
tion and Automotive Safety, Analog Devices Inc,
January 2019 [26]

Active Sensors

Active sensors have a signal transmis-
sion source and rely on the principle 

environment. ToF measures the travel 
time of a signal from its source to a 

the signal to return. 

The frequency of the signal used de-
termines the energy used by the sys-
tem, as well as its accuracy. Therefore, 
determining the correct wavelength 
plays a key role in choosing which 
system to use.

Ultrasonic sensors (also referred to as 
SONAR; SOund NAvigation Ranging) 
use ultrasound waves for ranging and 
are by far the oldest and lowest cost 
of these systems. As sound waves 
have the lowest frequency (longest 
wavelengths) among the sensors 
used, they are more easily disturbed. 
This means the sensor is easily 
affected by adverse environmental 
conditions like rain and dust. Inter-
ference created by other sound waves 
can affect the sensor performance 
as well and needs to be mitigated by 
using multiple sensors and relying on 
additional sensor types. In addition, as 
sound waves lose energy as distance 
increases, this sensor is only effective 
over short distances such as in park 
assistance. More recent versions rely 
on higher frequencies, to reduce the 
likelihood of interference.[24]

RADAR (RAdio Detection And Rang-
ing) uses radio waves for ranging. 
Radio waves travel at the speed of 
light and have the lowest frequency 
(longest wavelength) of the electro-
magnetic spectrum. RADAR signals 

-
rials that have considerable electrical 
conductivity, such as metallic objects. 
Interference from other radio waves 
can affect RADAR performance, while 
transmitted signals can easily bounce 
off curved surfaces, and thus the 
sensor can be blind to such objects. 
At the same time, using the bouncing 
properties of the radio waves can 
enable a RADAR sensor to ‘see’ beyond 
objects in front of it. RADAR has less-
er abilities in determining the shape 
of detected objects than LIDAR.[25]

-
DAR are its maturity, low cost, and 
resilience against low light and bad 
weather conditions. However, radar 
can only detect objects with low 
spatial resolution and without much 
information about the spatial shape 
of the object, thus distinguishing 
between multiple objects or separat-
ing objects by direction of arrival can 
be hard. This has relegated radars to 
more of a supporting role in automo-
tive sensor suites.[17] 

 

Time of flight principle , illustrated.  
Image: Wevolver.
 
The distance can be calculated using the 
formula d=(v⋅t)/2. Where d is the distance, 
v is the speed of the signal (the speed of 
sound for sound waves, and the speed of 
light for electromagnetic waves) and t is 
the time for the signal to go to reach the 
object and reflect back. This calculation 
method is the most common but has lim-
itations and more complex methods have 
been developed; for example, using the 
phase-shift in a returning wave.[23]
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“Almost everything is in R&D, of which 95 per-
cent is in the earlier stages of research, rather 
than actual development, the development stage 
is a huge undertaking — to actually move it to-
wards real-world adoption and into true series 
production vehicles. Whoever is able to enable 
true autonomy in production vehicles first is go-
ing to be the game changer for the industry. But 
that hasn’t happened yet.”

Austin Russell, founder and CEO of 

Luminar, June 2019 [21]

Imaging radar is particularly interest-
ing for autonomous cars. Unlike short 
range radar which relies on 24GHz ra-
dio waves, imaging radar uses higher 
energy 77-79 GHz waves. This allows 
the radar to scan a 100 degree field 
of view for up to a 300 m distance. 
This technology eliminates former 
resolution limitations and generates 
a true 4D radar image of ultra-high 
resolution.[15,26,27]

LIDAR (LIght Detection And Ranging) 
uses light in the form of a pulsed 
laser. LIDAR sensors send out 50,000 
- 200,000 pulses per second to cover 
an area and compile the returning 
signals into a 3D point cloud. By 
comparing the difference in consec-
utive perceived point clouds, objects 
and their movement can be detected 
such that a 3D map, of up to 250m in 
range, can be created.[28]

There are multiple approaches to 
LIDAR technology:

Mechanical scanning LIDARS use 
rotating mirrors and/or mechanically 
rotate the laser. This setup provides a 
wide Field Of Vision but is also rela-
tively large and costly. This technolo-
gy is the most mature. 

Microelectromechanical mirrors 

(MEMS) based LIDARS distribute 
the laser pulses via one or multiple 
tiny tilting mirrors, whose angle is 
controlled by the voltage applied to 
them. By substituting the mechanical 
scanning hardware with an electro-
mechanical system, MEMS LIDARS can 
achieve an accurate and power-ef-
ficient laser deflection, that is also 
cost-efficient.[29] 

LIDAR Systems that do not use any 
mechanical parts are referred to as 
solid-state, and sometimes as ‘LIDAR-
on-a-chip.’

Flash LIDARS are a type of solid-state 
LIDARS that diffuse their laser beam 
to illuminate an entire scene in one 
flash. The returning light is captured 
by a grid of tiny sensors. A major chal-
lenge of Flash LIDARS is accuracy.[30]

Phased-Array LIDARS are another 
solid-state technology that is under-
going development. Such systems 
feed their laser beam into a row of 
emitters that can change the speed 
and phase of the light that passes 
through.[31] The laser beam gets 
pointed by incrementally adjusting 
the signal’s phase from one emitter to 
the next. 

Metamaterials: A relatively new 
development is to direct the laser by 
shining it onto dynamically tunable 
metamaterials. Tiny components on 
these artificially structured metas-
urfaces can be dynamically tuned to 
slow down parts of the laser beam, 
which through interference results 
in a beam that’s pointing in a new 
direction. Lumotive, a startup funded 
by Bill Gates, claims its Metamaterial 
based LIDARS can scan 120 degrees 
horizontally and 25 degrees vertically.
[32] 

LIDAR provides a 3D point cloud of the environment.  
Image : Renishaw
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Interference from a source with the 
same wavelength, or changes in 
reflectivity of surfaces due to wet-
ness can affect the performance of 
LIDAR sensors. LIDAR performance 
can also be affected by external light, 
including from other LIDARS.[33] While 
traditional LIDAR sensors use 900 nm 
wavelengths, new sensors are shifting 
to 1500 nm enabling the vehicle to 
see objects 150-250 m away.[26,28]

LIDAR has the benefits of having a 
relatively wide field of vision, with 
potentially full 360 degree 3D cover-
age (depending on the type of LIDAR 
chosen). Furthermore, it has a longer 
range, more accurate distance esti-
mates compared to passive (optical) 
sensors and lower computing cost.[17] 
Its resolution however, is poorer and 
laser safety can put limits on the laser 
power used, which in turn can affect 
the capabilities of the sensor. 

These sensors have traditionally been 
very expensive, with prices of tens of 
thousands of dollars for the iconic 
rooftop mounted 360 degree units. 
However, prices are coming down: 
Market leader Velodyne announced in 
January 2020 a Metamaterials LIDAR 
that should ship for $100, albeit offer-
ing a narrower field of vision (60° 
horizontal x 10° vertical) and shorter 
range (100m).[34,35]

Among the three main active, ToF 
based systems, SONAR is mainly used 
as a sensor for very close proximity 
due to the lower range of ultrasound 
waves. RADAR cannot make out 
complex shapes, but it is able to see 
through adverse weather such as rain 
and fog. LIDAR can better sense an 
object’s shape, but is shorter range 
and more affected by ambient light 
and weather conditions. Usually two 
active sensor systems are used in 
conjunction, and if the aim is to only 
rely on one, LIDAR is often chosen. 
Secondly, active sensors are often 
used in conjunction with passive 
sensors (cameras).

Various object detection and mapping 
sensors are used for various purposes, 
and have complementary capabilities 
and ranges. Image: Wevolver
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Sensor
Measurement  

distance (m)
Cost ($)

Data rate

(Mbps)

Camera 0-250 4–200 500-3500

Ultrasound 0.02-10 30-400 < 0.01

RADAR 0.2-300 30-400 0.1-15

LIDAR Up to 250 1,000-75,000 20-100

Comparison of various sensors used in autonomous vehicles. [14,18,26,36–38]

Note that these are typical ranges and more extreme values exist. For example, Arbe Robotics’ RADAR can 
generate 1GBps depending on requirements from OEMs. Also note that multiple low costs sensors can be 
required to achieve comparable performance to high-end sensors.

Choice of Sensors

While all the sensors presented have 
their own strengths and shortcom-
ings, no single one would be a viable 
solution for all conditions on the 
road. A vehicle needs to be able to 
avoid close objects, while also sens-
ing objects far away from it. It needs 
to be able to operate in different 
environmental and road conditions 
with challenging light and weather 
circumstances. This means that to 
reliably and safely operate an auton-
omous vehicle, usually a mixture of 
sensors is utilized. 

The following technical factors 
affect the choice of sensors:

• The scanning range, determining 
the amount of time you have to 
react to an object that is being 
sensed.

• Resolution, determining how 
much detail the sensor can give 
you.

• Field of view or the angular res-
olution, determining how many 
sensors you would need to cover 
the area you want to perceive.

• Ability to distinguish between 
multiple static and moving ob-
jects in 3D, determining the num-
ber of objects you can track.

• Refresh rate, determining how 
frequently the information from 
the sensor is updated.

• General reliability and accuracy 
in different environmental con-
ditions.

• Cost, size and software compat-
ibility.

• Amount of data generated.

Vehicle manufacturers use a 
mixture of optical and ToF sen-
sors, with sensors strategically 
located to overcome the short-
comings of the specific technol-
ogy. By looking at their setup we 
can see example combinations 
used for perception:

• Tesla’s Model S uses a forward 
mounted radar to sense the 
road, 3 forward facing cameras 
to identify road signs, lanes and 
objects, and 12 ultrasonic sensors 
to detect nearby obstacles around 
the car

• Volvo-Uber uses a top mounted 
360 degree Lidar to detect road 
objects, short and long range 
optical cameras to identify road 
signals and radar to sense close-
by obstacles

• Waymo uses a 360 degree LIDAR 
to detect road objects, 9 visual 
cameras to track the road and a 
radar for obstacle identification 
near the car.

• Wayve uses a row of 2.3-meg-
apixel RGB cameras with high-dy-
namic range, and satellite naviga-
tion to drive autonomously.[39]
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Long-range LIDAR4x RADAR 360° Cameras Audio 2x Mid-range LIDAR2x Short-range LIDAR

Forward Facing RADAR 12 Ultrasonics around the vehicle

3x Forward Facing Cameras (Wide, Main, Narrow) Forward Looking Side Cameras

Rearward Looking Side Cameras

Rear View Camera

Uber’s Hardware:

Volvo’s Hardware:

RADAR, front & back

LIDARForward Facing Cameras Side and Rear Cameras

Forward Facing Cameras Side Cameras Rear CameraUltrasound, front & back

Different Approaches  
by Tesla, Volvo-Uber, and Waymo:

Tesla Model S. Volvo-Uber XC90.Way-
mo Chrysler Pacifica[36, 40-45] Images: 
adapted from Tesla, Volvo, Waymo, by 
Wevolver.

Companies take different approaches 
to the set of sensors used for autono-
my, and where they are placed around 
the vehicle.

Tesla’s sensors contain heating to 
counter frost and fog, Volvo’s camer-
as come equipped with a water-jet 
washing system for cleaning their 
nozzles, and the cone that contains 
the cameras on Waymo’s Chrysler has 
water jets and wipers for cleaning.

Volvo provides a base vehicle with 
pre-wiring and harnessing for Uber 
to directly plug in its own self-driv-
ing hardware, which includes the rig 
with LIDAR and cameras on top of the 
vehicle.
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Geolocalization

Once the autonomous vehicle has 
scanned its environment, it can find 
its location on the road relative to 
other objects around it. This informa-
tion is critical for lower-level path 
planning to avoid any collisions with 
objects in the vehicle’s immediate 
vicinity.

On top of that, in most cases the user 
communicates the place they would 
like to go to in terms of a geograph-
ical location, which translates to a 
latitude and longitude. Hence, in addi-
tion to knowing its relative position 
in the local environment, the vehicle 
needs to know its global position on 
Earth in order to be able to determine 
a path towards the user’s destination.

The default geolocalization method 
is satellite navigation, which provides 
a general reference frame for where 
the vehicle is located on the planet. 
Different Global Navigation Satellite 
Systems (GNSS) such as the American 
GPS, the Russian GLONASS, the Euro-
pean Galileo or the Chinese Beidou 
can provide positioning information 
with horizontal and vertical resolu-
tions of a few meters. 

While GPS guarantees a global signal 
user range error (URE) of less than 7.8 
m, its signal’s actual average range 
error has been less than 0.71 m. The 
real accuracy for a user however, de-
pends on local factors such as signal 
blockage, atmospheric conditions, and 
quality of the receiver that’s used.
[46] Galileo, once fully operational, 
could deliver a < 1m URE.[47] Higher 

accuracy can be achieved using mul-
ti-constellation; where the receiver 
leverages signals from multiple GNSS 
systems. Furthermore, accuracy can be 
brought down to ~ 1cm levels using 
additional technologies that augment 
the GNSS system. 

To identify the position of the car, all 
satellite navigation systems rely on 
the time of flight of a signal between 
the receiver and a set of satellites. 
GNSS receivers triangulate their po-
sition using their calculated distance 
from at least four satellites.[48] By con-
tinuously sensing, the path of the ve-
hicle is revealed. The heading of the 
vehicle can be determined using two 
GNSS antennas, by using dedicated 
onboard sensors such as a compass, 
or it can be calculated based on input 
from vision sensors.[49]

While accurate, GNSS systems are 
also affected by environmental fac-
tors such as cloud cover and signal 
reflection. In addition, signals can be 
blocked by man-made objects such as 
tunnels or large structures. In some 
countries or regions, the signal might 
also be too weak to accurately geolo-
cate the vehicle.

To avoid geolocalization issues, an 
Inertial Measurement Unit (IMU) is 
integrated with the system.[50,51] By 
using gyroscopes and accelerometers, 
such a unit can extrapolate the data 
available to estimate the new loca-
tion of the vehicle when GNSS data is 
unavailable. 

In the absence of additional signals 
or onboard sensors, dead-reckoning 
may be used, where the car’s naviga-
tion system uses wheel circumference, 
speed, and steering direction data to 
calculate a position from occasion-
ally received GPS data and the last 
known position.[52] In a smart city 
environment, additional navigational 
aid can be provided by transponders 
that provide a signal to the car; by 
measuring its distance from two or 
more signals the vehicle can find its 
location within the environment.

Maps

Today, map services such as Google 
Maps are widely used for navigation. 
However, autonomous vehicles will 
likely need a new class of high defi-
nition (HD) maps that represent the 
world at up to two orders of magni-
tude more detail. With an accuracy of 
a decimeter or less, HD maps increase 
the spatial and contextual awareness 
of autonomous vehicles and provide 
a source of redundancy for their 
sensors. 

By triangulating the distance from 
known objects in a HD map, the 
precise localization of a vehicle can 

Amnon Shashua,  

Chief Technology Officer at 
Mobileye, 2017 [55]

A 3D HD map covering an intersection. Image: Here

“If we want to have 
autonomous cars 
everywhere, we have 
to have digital maps 
everywhere.”
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“The need for dense 
3-D maps limits 
the places where 
self-driving cars can 
operate.”

Daniela Rus,  

director of MIT’s Computer  
Science and Artificial Intelli-
gence Laboratory (CSAIL), 2018

be determined. Another benefit is 
that the detailed information a high 
definition map contains could narrow 
down the information that a vehicle’s 
perception system needs to acquire, 
and enable the sensors and software 
to dedicate more efforts towards 
moving objects.[53]

HD maps can represent lanes, geome-
try, traffic signs, the road surface, and 
the location of objects like trees. The 
information in such a map is repre-
sented in layers, with generally at 
least one of the layers containing 3D 
geometric information of the world in 
high detail to enable precise calcu-
lations. 

Challenges lie in the large efforts to 
generate high definition maps and 
keep them up to date, as well as in 
the large amount of data storage and 
bandwidth it takes to store and trans-
fer these maps.[54]

Most in the industry express HD maps 
to be a necessity for high levels of 
autonomy, in any case for the near 
future as they have to make up for 
limited abilities of AI. However, some 
disagree or take a different approach. 

According to Elon musk Tesla “briefly 
barked up the tree of high precision 
lane line [maps], but decided it wasn’t 
a good idea.”[56] In 2015 Apple, for 
its part, patented an autonomous 
navigation system that lets a vehicle 
navigate without referring to exter-
nal data sources. The system in the 
patent leverages AI capabilities and 
vehicle sensors instead.[57]

As another example, London based 
startup Wayve only uses standard 
sat-nav and cameras. They aim to 
achieve full autonomy by using 
imitation learning algorithms to copy 
the behavior of expert human drivers, 
and consequently using reinforcement 
learning to learn from each inter-
vention of their human safety driver 
while training the model in autono-
mous mode.[58]

Researchers from MIT’s Computer 
Science and Artificial Intelligence 
Laboratory (CSAIL) also took a 
‘map-less’ approach and developed a 
system that uses LIDAR sensors for 
all aspects of navigation, only relying 
on GPS for a rough location estimate.
[59–61]

Based on the raw data captured 
by the AV’s sensor suite and the 
pre-existing maps it has access to, 
the automated driving system needs 
to construct and update a map of 
its environment while keeping track 
of its location in it. Simultaneous 
localization and mapping (SLAM) al-
gorithms let the vehicle achieve just 
that. Once its location on its map is 
known, the system can start planning 
which path to take to get from one 
point to another. 

SLAM and  
Sensor Fusion
SLAM is a complex process because 
a map is needed for localization and 
a good position estimate is needed 
for mapping. Though long consid-
ered a fundamental chicken-or-egg 
problem for robots to become au-
tonomous, breakthrough research in 
the mid-1980s and 90s solved SLAM 
on a conceptual and theoretical 
level. Since then, a variety of SLAM 
approaches have been developed, the 
majority of which uses probabilistic 
concepts.[62,63]

In order to perform SLAM more accu-
rately, sensor fusion comes into play. 
Sensor fusion is the process of com-
bining data from multiple sensors 
and databases to achieve improved 
information. It is a multi-level pro-
cess that deals with the association, 
correlation, and combination of data, 
and enables to achieve less expen-
sive, higher quality, or more relevant 
information than when using a single 
data source alone.[64]

Thinking & Learning

ACT & CONTROL 

THE VEHICLE
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The complex computation and 
decision making environment of 
an autonomous vehicle.[65]  
Image: Wevolver
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Two main approaches to the AI architecture of autonomous vehicles: 1) sequential per-
ception-planning-action-pipelines 2) an End2End system.[66]  
Image: Wevolver

For the all processing and decision 
making required to go from sensor 
data to motion in general two differ-
ent AI approaches are used [66]: 

1. Sequentially, where the driving 
process is decomposed into com-
ponents of a hierarchical pipeline. 
Each step (sensing, localization 
and mapping, path planning, 
motion control) is handled by a 
specific software element, with 
each component of the pipeline 
feeding data to the next one, or

2. An End-to-End solution based on 
deep learning that takes care of 
all these functions.

The question which approach is best 
for AVs is an area of ongoing debate. 
The traditional, and most common 
approach consists of decomposing 
the problem of autonomous driv-
ing into a number of sub-problems 
and solving each one sequentially 
with a dedicated machine learning 
algorithm technique from computer 
vision, sensor fusion, localization, 
control theory, and path planning.[67]

End-to-End (e2e) learning increas-
ingly gets interest as a potential 
solution to the challenges of the 
complex AI systems for autonomous 
vehicles. End-to-end (e2e) learning 
applies iterative learning to a com-
plex system as a whole, and has been 
popularized in the context of deep 
learning. An End-to-End approach 
attempts to create an autonomous 
driving system with a single, com-
prehensive software component that 
directly maps sensor inputs to driving 
actions. Because of breakthroughs 
in deep learning the capabilities of 
e2e systems have increased as such 
that they are now considered a viable 
option. These systems can be created 
with one or multiple different types 
of machine learning methods, such 
as Convolutional Neural Networks or 
Reinforcement Learning, which we 
will elaborate on later in this report.
[67,68] 

First, we’ll review how the data from 
the sensors is processed to reach a 
decision regarding the robotic vehi-
cle’s motion. Depending on the differ-
ent sensors used onboard the vehicle, 
different software schemes can be 
used to extract useful information 
from the sensor signals.

There are several algorithms that 
can be used to identify objects in 
an image. The simplest approach 
is edge detection, where changes 
in the intensity of light or color in 
different pixels are assessed.[69] One 
would expect pixels that belong to 
the same object to have similar light 
properties; hence looking at chang-
es in the light intensity can help 
separate objects or detect where one 
object turns to the next. The problem 
with this approach is that in low light 
intensity (say at night) the algorithm 
cannot perform well since it relies on 
differences in light intensity. In addi-
tion, as this analysis has to be done 
on each shot and on multiple pixels, 
there is a high computational cost.

LIDAR data can be used to compute 
the movement of the vehicle with 
the same principle. By comparing 
two point clouds taken at consecu-
tive instants, some objects will have 
moved closer or further from the 
sensor. A software technique called 
iterative closest point iteratively revis-

es the transformation between the 
two point clouds, which enables to 
calculate the translation and rotation 
the vehicle had. 

While useful, the preceding ap-
proaches consume much computing 
time, and cannot easily be scaled 
to the case of a self-driving vehicle 
operating in a continuously changing 
environment. That is where machine 
learning comes into play, relying on 
computer algorithms that have al-
ready learned to perform a task from 
existing data.
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Machine Learning 
Methods
Different types of machine learning 
algorithms are currently being used 
for different applications in autono-
mous vehicles. In essence, machine 
learning maps a set of inputs to a set 
of outputs, based on a set of training 
data provided. Convolutional Neural 
Networks (CNN), Recurrent Neural 
Networks (RNN) and Deep Reinforce-
ment Learning (DRL) are the most 
common deep learning methodolo-
gies applied to autonomous driving.
[66]

CNNs are mainly used to process 
images and spatial information to 
extract features of interest and identi-
fy objects in the environment. These 
neural networks are made of a convo-
lution layer: a collection of filters that 
tries to distinguish elements of an im-
age or input data to label them. The 
output of this convolution layer is fed 
into an algorithm that combines them 
to predict the best description of an 
image. The final software component 
is usually called an object classifier, 
as it can categorize an object in the 
image, for example a street sign or 
another car.[69–71]

RNNs are powerful tools when work-
ing with temporal information such 
as videos. In these networks the out-
puts from the previous steps are fed 
into the network as input, allowing 
information and knowledge to persist 
in the network and be contextualized.
[72–74]

DRL combines Deep Learning (DL) 
and Reinforcement Learning. DRL 
methods let software-defined ‘agents’ 
learn the best possible actions to 
achieve their goals in a virtual en-
vironment using a reward function. 
These goal-oriented algorithms learn 
how to attain an objective, or how to 
maximize along a specific dimension 
over many steps. While promising, a 
challenge for DRL is the design of the 
correct reward function for driving a 
vehicle. Deep Reinforcement Learning 
is considered to be still in an early 
stage regarding application in auton-
omous vehicles.[75,76]

These methods don’t necessarily sit in 
isolation. For example, companies like 
Tesla rely on hybrid forms, which try 
to use multiple methods together to 
increase accuracy and reduce compu-
tational demands.[77,78] 

Training networks on several tasks 
at once is a common practice in 
deep learning, often called multi-task 

training or auxiliary task training. This 
is to avoid overfitting, a common 
issue with neural networks. When a 
machine learning algorithm is trained 
for a particular task, it can become 
so focused imitating the data it is 
trained on that its output becomes 
unrealistic when an interpolation or 
extrapolation is attempted. By train-
ing the machine learning algorithm 
on multiple tasks, the core of the 
network will specialize in finding 
general features that are useful for 
all purposes instead of specializing 
only on one task. This can make the 
outputs more realistic and useful for 
applications.

Algorithms turn input from sensors into object classifications and a map of the environment. 

Image: Wayve
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“At Waymo, we’ve 
driven more than 10 
million miles in the 
real world, and over 
10 billion miles in 
simulation.”

Waymo CTO Dmitri Dolgov,  

July 2019 [85]

“We have quite a 
good simulation, too, 
but it just does not 
capture the long tail 
of weird things that 
happen in the real 
world.”

Elon Musk,  

April 2019 [84]

Gathering Data

In order for these algorithms to be 
used, they need to be trained on data 
sets that represent realistic scenarios. 
With any machine learning process, a 
part of the data set is used for train-
ing, and another part for validation 
and testing. As such, a great amount 
of data is annotated by autonomous 
vehicle companies to achieve this 
goal.[77] Many datasets, with semantic 
segmentation of street objects, sign 
classification, pedestrian detection 
and depth prediction, have been 
made openly available by researchers 
and companies including Aptiv, Lyft, 
Waymo, and Baidu. This has signifi-
cantly helped to push the capabilities 
of the machine learning algorithms 
forward.[79–81]

One way to gather data is by using a 
prototype car. These cars are driven 
by a driver. The perception sensors 
onboard are used to gather informa-
tion about the environment. At the 
same time, an on-board computer will 
record sensors readings coming from 
the pedals, the steering wheel, and all 
other information that can describe 
how the driver acts. Due to the large 
amount of data that needs to be 
gathered and labelled by humans, 
this is a costly process. According 
to Andrej Karpathy, Director of AI at 
Tesla, most of the efforts in his group 
are dedicated to getting better and 
better data.[77]

Alternatively, simulators may be used. 
“Current physical testing isn’t enough; 
therefore, virtual testing will be 
required,” says Jamie Smith, Director 
of Global Automotive Strategy at 
National Instruments.[82] By building 
realistic simulators, software compa-
nies can create thousands of virtual 
scenarios. This brings the cost of data 
acquisition down but introduces the 
problem of realism: these virtual 
scenarios are defined by humans and 
are less random that what a real vehi-
cle goes through. There is growing 
research in this area, called sim-to-

real transfer, that studies methods to 
transfer the knowledge gathered in 
simulation in the real world.[83]

Using all the data from the sensors 
and these algorithms, an autonomous 
vehicle can detect objects surround-
ing it. Next, it needs to find a path to 
follow.

Simulators are used to explore thousands of varia-
ble scenarios. Image: Autoware.AI
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“In most cases, if you look at what went wrong 
during a disengagement [the moment when 
the AV needs human intervention - note by 
editor], the role of hardware failure is 0.0 per-
cent. Most of the time, it’s a software failure, 
that is, software failing to predict what the 
vehicles are gonna be doing or what the pe-
destrians are gonna be doing.”

Anthony Levandowski, 

autonomous vehicle technology 
pioneer, April 2019 [90]

Path Planning

With the vehicle knowing the objects 
in its environment and its location, 
the large scale path of the vehicle can 
be determined by using a voronoi di-
agram (maximizing distance between 
vehicle and objects), an occupancy 
grid algorithm, or with a driving corri-
dors algorithm.[86] However, these tra-
ditional approaches are not enough 
for a vehicle that is interacting with 
other moving objects around it and 
their output needs to be fine-tuned.

Some autonomous vehicles rely on 
machine learning algorithms to not 
only perceive their environment but 
also to act on that data to control 
the car. Path planning can be taught 
to a CNN through imitation learning, 
in which the CNN tries to imitate the 
behavior of a driver. In more advanced 
algorithms, DRL is used, where a 
reward is provided to the autonomous 
system for driving in an acceptable 
manner. Usually, these methods 
are hybridized with more classical 
methods of motion planning and 
trajectory optimization to make sure 
that the paths are robust. In addition, 
manufacturers can include additional 
objectives, such as reducing fuel use, 
for the model to take into account as 
it tries to identify optimal paths.[87]

Training neural networks and infer-
ence during operations of the vehicle 
requires enormous computing power. 
Until recently, most machine learning 
tasks were executed on cloud-based 
infrastructure with excessive comput-
ing power and cooling. With autono-
mous vehicles, that is no longer possi-
ble as the vehicle needs to be able to 
simultaneously react to new data. As 
such, part of the processing required 
to operate the vehicle needs to take 
place onboard, while model refine-
ments could be done on the cloud.

Recent advances in machine learning 
are focusing on how the huge amount 
of data generated by the sensors on-
board AVs can be efficiently processed 
to reduce the computational cost, 
using concepts such as attention [88] 
or core-sets.[89] In addition, advances 
in chip manufacturing and miniatur-
ization are increasing the computing 
capacity that can be mounted on an 
autonomous vehicle. With advances 
in networking protocols, cars might 
be able to rely on low-latency net-
work-based processing of data to aid 
them in their autonomous operation.

Autonomous vehicles deploy algorithms to plan the vehi-
cle’s own path, as well as estimate the path of other moving 
objects (in this case the system also estimates the path of 
the 2 red squares that represent bicyclists). Image: Waymo
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How does a vehicle act based upon 
all this information? In current cars 
driven by humans, the vehicle’s ac-
tions such as steering, braking, or sig-
naling are generally controlled by the 
driver. A mechanical signal from the 
driver is translated by an electronic 
control unit (ECU) into actuation com-
mands that are executed by electric or 
hydraulic actuators on board the car. A 
small number of current vehicle mod-
els contain Drive-by-Wire systems, 
where mechanical systems like the 
steering wheel column are replaced 
by an electronic system.

In a (semi-)autonomous car, such 
functionality is replaced by drive con-
trol software directly communicating 
to an ECU. This can provide opportu-
nities to change the structure of the 
vehicle and to reduce the number of 
components, especially those added 
to specifically translate mechanical 
signals from the driver to electric 
signals for the ECUs. 

Today’s vehicles contain multiple 
ECUs, from around 15-20 in standard 
cars to around a hundred in high-
end vehicles.[91] An ECU is a simple 
computing unit with its own micro-

controller and memory, and it uses 
those to process the input data it 
receives into output commands for 
the subsystem it controls, for example 
to shift an automatic gearbox.

Generally speaking, ECUs can be 
either responsible for operations that 
control the vehicle, for safety features, 
or running infotainment and interior 
applications.[92] Most ECUs support 
a single application like electronic 
power steering, and locally run algo-
rithms and process sensor data.[93]

Acting

CAD render of the wire harness of a Bentley Bentayga. This is a Level 1 automated ve-
hicle with advanced driver assistance systems: including adaptive cruise control, auto-
matic braking in cities, pedestrian detection, night vision (which recognizes people and 
animals), traffic sign recognition and a system that changes speed in line with local 
speed limits. Image: Bentley

Architectures: 
Distributed vs 
Centralized 

Increasing demands and complexity 
challenge engineers to design the 
right electronic architecture for the 
system that needs to perform sensor 
fusion and simultaneously distribute 
decisions in a synchronized way to 
the lower level subsystems that act 
on the instructions.[94,95]

In theory, at one extreme of the 
possible setups one can choose a 
completely distributed architecture, 
where every sensing unit processes 
its raw data and communicates with 
the other nodes in the network. At 
the other end of the spectrum we 
have a centralized architecture, where 
all Remote Control Units (RCUs) are 
directly connected to a central control 
point that collects all information and 
performs the sensor fusion process.
[96,97]

In the middle of this spectrum are hy-
brid solutions that combine a central 
unit working at higher abstraction 
levels with domains that perform 
dedicated sensor processing and/or 
execute decision making algorithms. 
Such domains can be based on loca-
tion within the vehicle, e.g. domains 
for the front and back of the car, on 
the type of function they control, or 
on the type of sensors they process 
(e.g. cameras).[93] 

In a centralized architecture the 
measurements from different sensors 
are independent quantities and not 
affected by other nodes. The data 
is not modified or filtered at the 
edge nodes of the system, providing 
the maximum possible information 
for sensor fusion, and there is low 
latency. The challenge is that huge 
amounts of data needs to be trans-
ported to the central unit and be pro-
cessed there. That not only requires a 
powerful central computer, but also a 
heavy wire harness with a high band-
width. Today’s vehicles contain over a 
kilometer of wires, weighing tens of 
kilo’s.[98]

A distributed architecture can be 
achieved with a lighter electrical 
system but is more complex. Although 
the demand related to bandwidth 
and centralized processing is reduced 
greatly in such an architecture, it 
introduces latency between actuation 
and sensing phases and increases the 
challenges to the validation of data.
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“To put such a system into a 
combustion-engined car doesn’t 
make any sense, because the 
fuel consumption will go up 
tremendously.”

Wilko Stark, 
Vice President of Strategy, 
Mercedes-Benz, 2018 [101]

Power, Heat, 
Weight, and Size 
challenges

Next to increased complexity of the 
system, automation also poses chal-
lenges on the power consumption, 
thermal footprint, weight, and size of 
the vehicle components.

Regardless of how much the architec-
ture is distributed or centralized, the 
power requirements of the auton-
omous system are significant. The 
prime driver for this are the com-
putational requirements, which can 
easily be up to 100 times higher for 
fully autonomous vehicles than the 
most advanced vehicles in production 
today.[99] 

This power-hungriness of autono-
mous vehicles increases the demands 
on the performance of the battery 
and the capabilities of semiconductor 
components in the system. For fully 
electric vehicles, the driving range 
is negatively impacted by this power 
demand. Therefore, some companies 
like Waymo and Ford have opted to 
focus on hybrid vehicles, while Uber 
uses a fleet of full gasoline SUVs. 
However, experts point to full electric 
ultimately being the powertrain of 
choice because of the inefficiency of 
combustion engines in generating 
electric power used for onboard com-
puting.[98,100]

The increased processing demand 
and higher power throughput heats 
up the system. To keep electronic 

components performing properly and 
reliably, they must be kept within cer-
tain temperature ranges, regardless 
of the vehicle’s external conditions. 
Cooling systems, especially those that 
are liquid based, can further add to 
the weight and size of the vehicle. 

Extra components, extra wiring, and 
thermal management systems put 
pressure on reducing the weight, 
size, and thermal capabilities of any 
part of the vehicle. From reducing 
the weight of large components like 
LIDARs, to tiny ones, like the semicon-
ductor components that make up the 
electronic circuitry, there is a huge 
incentive for the suppliers of auto-
motive components to change their 
products accordingly. 

Semiconductor companies are 
creating components with smaller 
footprints, improved thermal per-
formance and lower interference, all 
while actually increasing reliability. 
Beyond evolving the various silicon 
components such as MOSFET’s, bipo-
lar transistors, diodes and integrated 
circuits, the industry also looks at 
using novel materials. Components 
that are based on Gallium Nitride 
(GaN) are seen as having a high im-
pact on future electronics. GaN would 
enable to create smaller devices for 
a given on-resistance and breakdown 
voltage compared to silicon because 
it can conduct electrons much more 
effectively.[102–104] 

To execute all the algorithms and 
processes for autonomy requires sig-
nificant computing and thus powerful 
processors. A full autonomous vehicle 
will likely contain more lines of code 

than any software platform or oper-
ating system that has been created 
so far. GPU-accelerated processing 
is currently the industry standard, 
with Nvidia being the market leader. 
However, increasingly companies are 
pursuing different solutions; much 
of Nvidia’s competition is focusing 
their chip design on Tensor Process-
ing Units (TPU), which accelerate the 
tensor operations that are the core 
workload of deep learning algorithms. 
GPUs on the other hand were devel-
oped for graphic processing and thus 
prevent deep learning algorithms 
from harnessing the full power of the 
chip.[105]

As seen, both the physique as the 
software of vehicles will change 
significantly as vehicles increase their 
level of automation. Next to that, 
greater autonomy in vehicles will also 
impact how you as a user will interact 
with them.

A GPU processor based hardware 
platform for autonomous driving.  
Image: Nvidia
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“Trust building is 
the major problem 
at the moment.”

Zeljko Medenica, 
Principal Engineer and Human 
Machine Interface 9HMI) Team 
Lead at the US R&D Center of 
Changan, January 2020

On a daily basis we interact with 
vehicles in various roles, including 
as a driver, fellow traffic participant 
(car, bicycle, etc.), pedestrian, or as a 
passenger. The shift towards auton-
omy must take into account the full 
spectrum of these subtle interactions. 
How do these interactions evolve, and 
what role do the new sensors and 
software play? How will they reshape 
interactions with the vehicle?

To start, we can look at two major 
players in the field, Waymo and Tesla, 
who have taken different approaches 
towards user experience.

Tesla is working on evolving what a 
car can do as a product. The car, by it-
self, does not change much. Yet when 
your car can autonomously drive you 
anywhere, park itself and be sum-
moned back, your experience changes 
dramatically. Suddenly, all non-auton-
omous cars seem ridiculously outdat-
ed. Tesla’s strategy at the moment, is 
to build a feature that will radically 
differentiate them in the market.

Waymo, on the other hand, is trying 
to answer a completely different 
question: Do you really need to own 
a car? If your city has a pervasive 
service of autonomous taxis that can 
drive people around, why even bother 
owning your own? 

Hence, Waymo is trying to build an 
infrastructure of cars as a service. 
The user experience of their autono-
mous vehicles is completely different: 
you summon a car like you would 
summon an Uber. The only difference: 
no one is at the wheel. The car will 
safely drop you wherever you need 
to go, and you do not need to worry 
about anything after you reach your 
destination. 

Due to the novelty of the technology, 
trust-building measures are highly 
important during the initial years 
of autonomous driving. People have 
trouble trusting machines and are 
quick to lose confidence in them. In 
a 2016 study, people were found to 
forgive a human advisor but stop 
trusting a computer advisor–for the 
same, single mistake.[106]

Whether the car is the product or part 
of a service, to make autonomous ve-
hicles work, users must feel good in-
side and outside of them. Setting the 
right expectations, building trust with 
the user, and communicating clearly 
with them as needed are the corner-
stones of the design process.[107] We’ll 
review what the experience of riding 
in a self-driving car looks like now, at 
the beginning of the decade.

User experience

Inside a Tesla with its Autopilot feature.
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Inside the  
vehicle

While driving a Tesla with AutoPilot, 
an L2 autonomous vehicle, the user 
must be behind the wheel and needs 
to be aware of what’s happening. The 
car’s display shows the vehicles and 
what it sees on the road, allowing 
the user to assess the cars ability to 
perceive its environment correctly. On 
a highway, the experience is smooth 
and reportedly 9 times safer than a 
human driver.[108]

Waymo has achieved Level 4, meaning 
the vehicle can come to a safe stop 
without a human driver taking over, 
although generally a safety driver 
is still involved.[109] Inside a Waymo, 
you feel like you are riding a taxi. 
The main design problem for this, as 
stated by Ryan Powell, UX Designer at 
Waymo, is reproducing the vast array 
of nonverbal communication that 
happens between the driver and the 
passenger.[110]

Even from the backseat, watching the 
behavior of the driver can tell you a 
lot about what is going to happen. 
The gaze of the driver directly shows 
what is drawing their attention, and 
the passenger can feel safe by seeing 
that they saw the woman crossing 
the road or the oncoming car at the 
intersection. This sensation is lost 
without the driver, and the Waymo 
passenger is left to passively interact 
with the vehicle through a screen in 
the backseat.

While the vehicle has a 360 degree, 
multi-layered view on its surround-
ings that is obtained with an array 
of various sensors, on the screen 
the user only sees a very minimal 
depiction of the surrounding cars, 
buildings, roads, and pedestrians; just 
enough to understand that the car is 
acknowledging their presence and 
planning accordingly.[111] 

At an intersection, a driver usually 
looks to the left and right to see if 
there are oncoming cars. To show the 
user that the autonomous driving 
system is taking this into account, the 
map rotates to the left and right at 
intersections, thus showing the user 
that the vehicle is paying attention 
to traffic. This is quite an interesting 
design artifact: the system always 
takes into account the whole range of 
data and does not need to “look right 
and left”, but that map movement em-
ulates the behavior of a human driver, 
helping the passenger to feel safe. 
The screen is hence both the “face” 
of the car and a minimal description 
of its environment, used as said to 
replicate the nonverbal communica-
tion that would happen with a human 
driver.

Until humans are familiar interact-
ing with autonomous vehicles, the 
experience of riding one needs to 
emulate what we are used to: a driver 
paying attention to the surroundings. 
Increasing automation impacts both 
User Experience and User Acceptance: 
Research indicates that when levels 
of automation increase beyond level 
1 ADAS systems, the perceived control 
and experience of fun decrease for 

users, and users can feel a loss of 
competence in driving.[112,113] 

As trust in the technology increas-
es, the user interface will probably 
simplify, as individuals will no longer 
care to know every single step that 
the vehicle is planning to do. 

Preventing mode confusion is one 
element that contributes to growing 
trust in these systems. Mode confu-
sion arises when a driver is unsure 
about the current state of the vehicle, 
for example whether autonomous 
driving is active or not. Addressing 
this issue becomes more important as 
the levels of autonomy increase (L2+). 
The simplest way to do this is to 
make sure that the user interface for 
the autonomous mode is significantly 
different from the one which is used 
in the manual mode. 

Inside a Waymo self-driving taxi. Image: Waymo

Interface of the Waymo self-driving taxi at an intersection. 
Image: Waymo
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During the initial phases of autono-
mous driving implementation, auton-
omy will likely only be restricted to 
the defined predefined operational 
design domains. During a domain 
change, drivers may need to engage 
and control the vehicle. This transfer 
of control is another aspect that the 
user interface needs to facilitate. 
Bringing a driver back into the loop 
can be challenging, especially if the 
driver was disengaged for a long 
period of time. The transfer of control 
can be even more complex if the 
situation on the road is such that 
the driver needs to take over control 
immediately (this is the case with SAE 
L3 autonomous vehicles). 

The question that simultaneously 
arises is what the vehicle should do if 
the driver does not take over control 
when requested? One approach that 
most automobile manufacturers are 
currently taking is gradually stopping 
the vehicle in its lane. However, in 
some situations such as on a busy 
highway, bridge or in a tunnel, this 
kind of behavior may not be appropri-
ate. A different approach would be to 
keep some of the automation active 
in order to keep the driver safe until 
he/she takes over or until the vehicle 
finds a more convenient place to pull 
over. 

In the automated modes of driving, 
it is important that the logic of the 
system matches the way the user 
interprets how the system works, or 
in the case where it doesn’t match ex-
pectations, that the logic is communi-
cated to the user.

When technology evolves to the lev-
els of autonomy that do not require 
any human driving capabilities, the 
user experience will undergo the 
most dramatic change.

Naturally, at level 4 and 5 of auto-
mation steering wheels, pedals, and 
gear controls can be removed, shifting 
towards a system where the vehicle 
is controlled with a map interface on 
a screen, as is done on other robotic 
systems. Furthermore, the consoles 
designed on current cars aim to re-
duce distracted driving, a requirement 
that no longer holds at high and full 
autonomy.[114]

Removing steering wheel, pedals, 
and changing the role of the console 
leaves 2 functions for the interface of 
a fully autonomous vehicle[115]:

• Clear and adequate communica-
tion with the passengers

• Providing some form of manual 
control

On top of that, there are four chal-
lenges to address when designing in-
terfaces for autonomous vehicles[116]: 

1. Assuring safety
2. Transforming vehicles into places 

for productivity and play
3. Taking advantage of new mobili-

ty options (with autonomous cars 
moving from something we own 
to a service)

4. Preserving user privacy and data 
security

Finally, highly and fully automated 
vehicles could provide mobility to 
elderly and people with disabilities. 
The opportunity for these previously 
excluded users can only be seized 
when the User Experience design 
takes their role and abilities into 
account.

The external  
experience

While customers want a great expe-
rience while riding an AV, we must 
not forget about all the other drivers, 
pedestrians and infrastructure that 
the vehicle interacts with. Driving is a 
collective dance, defined by rules but 
also shaped by nonverbal communi-
cation and intuition.

The way a vehicle moves suggests 
what it is about to do, and human 
drivers expect a car to behave based 
on their experiences with other 
drivers on the road. Hence, from 
the perspective of human-machine 
interaction, it is fundamental to shape 
the behavior of a self-driving vehicle 
such that its intentions are clear. The 
need for this is made poignant by the 
numerous cases of a human driver 
rear-ending an autonomous vehicle 
because it behaved unexpectedly.[117]

In general, we have previously relied 
on simple signals (like turn indicators) 
and human-to-human interaction. 
Some of these ‘human’ habits apply to 
autonomous cars, such as signaling, 
but others, such as human-to-human 
interaction, need to be emulated 
using another method. In general, 
it’s easier for robots to interact with 
other robots than with humans, and 
this goes vice versa.

Drive.ai’s vehicles featured displays to communicate with other road 
participants. The Orange and blue color scheme of the vehicle was 
designed to draw attention. Image: Drive.ai
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Communication 
& Connectivity

V2V

V2P

V2I

V2N

The concept of Vehicle-to-Everything 
(V2X) communication covers various 
types of entities that a connected vehicle 
communicates with.  
Image: Wevolver

Enabling vehicles to share informa-
tion with other road participants as 
well as traffic infrastructure increases 
the amount and type of available 
information for autonomous vehi-
cles to act upon. Vice versa it can 
provide data for better traffic man-
agement. Connectivity also enables 
autonomous vehicles to interact with 
non-autonomous traffic and pedestri-
ans to increase safety.[12,121–123]

Furthermore, AVs will need to connect 
to the cloud to update their software 
and maps, and share back information 
to improve the collectively used maps 
and software of their manufacturer.

The digitalization of transport is 
expected to impact both individu-
al vehicles, public transport, traffic 
management, and emergency services. 
The communication needed can be 
summed under the umbrella term of 
Vehicle-to-Everything (V2X) commu-
nications.[124] This term encompasses 
a larger set of specific communication 
structures, such as Vehicle-to-Vehicle 
(V2V), Vehicle-to-infrastructure (V2I), 
Vehicle-to-Network (V2N), and Vehi-
cle-to-Person (V2P). 

A way for inter-vehicle coordination 
to impact the driving environment 
is through cooperative maneuvering. 

One application getting much atten-
tion is ‘platooning.’ When autonomous 
/ semi-autonomous vehicles platoon 
they move in a train-like manner, 
keeping only small distances between 
vehicles, to reduce fuel consumption 
and achieve efficient transport. Espe-
cially for freight trucks this is a highly 
investigated area as it could save up 
to 16% of fuel.[125] 

“We want to be cognizant 
of the context in which 
you see the car, and be 
responsive to it.”

For example, when pedestrians cross 
the road and see a car approach-
ing from a distance, they will safely 
assume that it will brake, especially 
if they can see the driver looking 
directly at them. This makes sure they 
know that they have their attention. 
How can we emulate this aspect in 
driverless cars? 

Melissa Cefkin, a human-machine in-
teraction researcher at Nissan, recent-
ly described how they are developing 
intent indicators that are outside the 
car, like screens able to display words 
or symbols. That allows to clearly and 
simply suggest what the autonomous 
vehicle is about to do: for example, it 
can communicate to the pedestrian 
that it has seen them, and they can 
cross the road safely.[110] 

Ford together with the Virginia Tech 
Transportation Institute has experi-
mented with using external indicator 
lights to standardize signaling to 
other road participants. Ford placed 
a LED light bar on top of the wind-
shield (where a pedestrian or bicyclist 
would look to make eye contact a 

driver) If the vehicle was yielding the 
lights would slowly move side-to-
side, acceleration was communicated 
with rapid blinking, and when steadily 
driving the light would shine com-
pletely solid.[118] 

Drive.ai was another company that 
paid attention to teaching auton-
omous vehicles to communicate. 
Founded in 2015 by masters and PhD 
students in the Artificial Intelligence 
Lab at Stanford University, Drive.
ai was acquired by Apple in summer 
2019. Their vehicles featured LED 
displays around the vehicle that com-
municated its state and intentions 
with messages icons, and animations. 
Initially their vehicles contained 
1 large display on the roof of the 
vehicle, but the company learned 
that’s not where people look for clues. 
Other lessons learned from their work 
with user focus groups include the 
importance of the right phrase of a 
message. For example, just “Waiting” 
didn’t communicate the vehicle’s state 
clearly enough and needed to be re-
placed with “Waiting for You.”[29,119,120]

When studying fleets of self-driv-
ing cars moving in the city, there is 
another area that must be analyzed: 
machine-machine interaction. It is 
crucial to understand if an AI trained 
to predict human behavior can also 
safely predict the intent of another 
AI. Enabling vehicles to connect and 
communicate can have a significant 
impact on their autonomous capabil-
ities.

Bijit Halder,  
Product and Design lead,  
Drive.ai, 2018 [119]
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Another example application of V2X 
was recently demonstrated by Fiat 
Chrysler Automobiles, Continental, 
and Qualcomm: V2V equipped cars 
broadcasted a message to following 
vehicles in the case of sudden braking 
to notify them timely of the potential-
ly dangerous situation.[126]

The network enabling these features 
must be highly reliable, efficient and 
capable of sustaining the data traffic 
load. V2X communication is predom-
inantly supported by two networking 
standards, each with significantly 
different design principles[124,127]: 

1. Dedicated short-range communi-
cation (DSRC), based on the IEEE 
802.11p automobile specific WiFi 
standard. DSRC uses channels of 
10 MHz bandwidth in the 5.9 GHz 
band (5.850–5.925 GHz),[128]

2. Cellular V2X (C-V2X), standard-
ized through the 3GPP release 15 
(3GPP is a global cooperation of 
six independent committees that 
define specifications for cellular 
standards). The Cellular-V2X radio 
access technology can be split in 
older LTE-based, and the newer 5G 
New Radio (5G-NR) based C-V2X, 
which is being standardized at the 
moment.[129]

DSRC and C-V2X both allow for 
communication between vehicles 
and other vehicles or devices directly 
without network access through an 
interface called PC5.[130] This inter-
face is useful for basic safety services 
such as sudden braking warnings, or 
for traffic data collection.[131] C-V2X 
also provides another communication 
interface called Uu, which allows the 

vehicle to communicate directly to 
the cellular network, a feature that 
DSRC does not provide.

Both technologies are going through 
enhancements (802.11bd and 5G-NR 
V2X) to support the more advanced 
applications that require reliability, 
low latency, and high data through-
put.[132] 

Current fourth generation (LTE/4G) 
mobile network are fast enough for 
gaming or streaming HD content, but 
lack the speed and resilience required 
to sustain autonomous vehicle net-
work operations.[133] 5G brings three 
main capabilities to the table: greater 
data rate speed (25-50% faster than 
4G LTE), lower latency (25-40% lower 
than 4G LTE), and the ability to serve 
more devices.[134] 

In the case of V2N over a cellular con-
nection, using the Uu interface, the 
requirements of a 5G network are[135]:

• Real data rates of 1 to 10 Gbit/s.
• 1ms end-to-end latency.
• Ability to support 1000 times the 

bandwidth of today’s cell phones.
• Ability to support 10 to 100 times 

the number of devices.
• A 99.999% perceived availability 

and 100% perceived coverage.
• Lower power consumption.

5G does not necessarily bring all of 
these at the same time, but it gives 
developers the ability to choose the 
performance needed for specific 
services. In addition, 5G could offer 
network slicing (creating multiple 
logical networks, each dedicated to 
a particular application within the 

same hardware infrastructure) and 
cloud management techniques (edge 
computing) to manage data traffic 
and capacity on demand.[136] 

Applications supporting fully auton-
omous vehicles could generate huge 
amounts of data every second. This 
has led semiconductor manufactur-
ers such as Qualcomm and Intel to 
develop new application-specific in-
tegrated circuits. These combine large 
5G bandwidth with innovative digital 
radio and antenna architectures, to 
change the autonomous vehicle into 
a mobile data center.[137,138] 

At the same time, it may be noted 
that high data loads are not always 
needed. Choosing what the relevant 
and minimally required data is, and 
transferring it at the right time to the 
right receiver can enable a lot of uses 
cases to transfer less data.

“In an autonomous car, we have to 
factor in cameras, radar, sonar, GPS 
and LIDAR –components as essential 
to this new way of driving as pistons, 
rings and engine blocks. Cameras 
will generate 20–60 MB/s, radar up-
wards of 10 kB/s, sonar 10–100 kB/s, 
GPS will run at 50 kB/s, and LIDAR 
will range between 10–70 MB/s. Run 
those numbers, and each autonomous 
vehicle will be generating approxi-
mately 4,000 GB –or 4 terabytes –of 
data a day.”

Brian Krzamich, 
CEO of Intel, 2016 [39]
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DSRC or C-V2X

The question whether DSRC or C-V2X 
is the best choice and which will 
prevail is the subject of strong debate. 
Performance and capabilities, deploy-
ment costs, and technology readiness 
level are among the considerations in 
this discussion. To make the two tech-
nologies co-exists in a geographic 
region would require overcoming the 
challenges of spectrum management 
and operational difficulties.[140] 

DSRC is the oldest of the technol-
ogies, and the current standard, 
802.11p, was approved in 2009. In 
1999, the U.S. government allocated a 
section of the 5.9 GHz band spectrum 
for automotive DSRC. During the 
Obama administration a rulemaking 
process was initiated to make DSRC 
required in all cars sold in 2023 
and onwards, though this process 
stalled. In December 2019 the US 
Federal Communications Commis-
sion proposed splitting up the band 
in the 5.9GHz spectrum that had 
been allocated to DSRC, and instead 
reserve big parts of it for commercial 
WiFi and C-V2X. According to the FCC 
slow traction on DSRC prompted the 
changes.

The European Union also had been 
working towards enforcing DSRC as 
a standard, but recently most of its 
member states voted against DSRC 
and in favor of C-V2X.[141]

China moves singularly in the direc-
tion of 5G, cellular based V2X. The 
country has plans to require C-V2X 
equipment in newly built cars from 

2025 onwards. This stems from Chi-
na’s existing ambitious investment in 
5G connectivity, with renders C-V2X 
a choice that fits well with existing 
investments. In 2019, about 130,000 
5G base stations were expected to 
become operational in China, with a 
projected 460 million 5G users by the 
end of 2025.[126]

Different automotive manufacturers 
are prioritizing different approaches 
for V2X. In 2017 Cadillac was one of 
the first companies to launch a pro-
duction vehicle with V2X capabilities, 
and chose to incorporate DSRC. The 
new Golf model from Volkswagen will 
also be equipped with the WiFi based 
technology. In contrast BMW, AUDI, 
PSA and Ford are currently working 
on Cellular-V2X compatible equip-
ment. Mid-2019 Toyota halted its 
earlier plans to install DSRC on U.S. 
vehicles by 2021, citing “a range of 
factors, including the need for greater 
automotive industry commitment as 
well as federal government support 
to preserve the 5.9 GHz spectrum 
band.”[141–143]

In terms of technical performance 
requirements for higher levels of au-
tonomy, many experts voice that 5G-
NR V2X is the technology of choice 
and that and that DSRC (nor LTE-V2X 
PC5) won’t sufficiently support some 
key AV features. 

The semiconductor manufactur-
er Qualcomm together with Ford 
compared the performance of C-V2X 
and DSRC in lab and field tests in Ann 
Arbor, Michigan and in San Diego, 
California. In a presentation to the 5G 
Automotive Association they conclud-

ed that C-V2X has a more extensive 
range and outperforms DSRC tech-
nology in robustness against inter-
ference, and in a number of scenarios, 
such as when a stationary vehicle 
obstructs V2V messages between two 
passing vehicles.[146]

Beyond the communication standard, 
the cloud network architecture is also 
a key component for autonomous ve-
hicles. On that end, the infrastructure 
already developed by companies such 
as Amazon AWS, Google Cloud and 
Microsoft Azure for other applications 
is already mature enough to handle 
autonomous vehicle applications.
[147–149]

“We’ve been looking at DSRC for a number of 
years along with Toyota, GM and Honda, so 
this is not a step that we take lightly in the 
sense of dismissing DSRC. But we think this 
is the right step to make given where we see 
the technology headed.”

“Wi-Fi is the only 
safe and secure 
V2X technology 
that has been 
tested for more 
than 10 years 
and is ready for 
immediate volume 
rollout.”

Lars Reger, 
Chief Technology Officer at 
NXP Semiconductors, Octo-
ber 2019 [145]

A demo of V2X system warning for 
vulnerable road users. Image: Audi 

Don Butler,  
Executive Director, Con-
nected Vehicle Platform 
And Products, Ford, January 
2019 [144]
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The Robocar.  
Image: Benedict Redgrove



Use case:  
Autonomous Racing
A company called ‘Roborace’ has been 
pushing the limits of technology in 
their autonomous racing vehicles. 
Roborace was announced at the end 
of 2015 and Robocar, their autono-
mous race car, was launched in Febru-
ary 2016. The Robocar currently holds 
the Guinness World Record for fastest 
autonomous vehicle at a speed of 
282.42 km/h (175.49 mph). Next to 
the Robocar, Roborace developed a 
second vehicle platform, the DevBot 
2.0, which contrary to the former, 
also allows space and controls for a 
human driver. 

The DevBot is used in the Season 
Alpha program, Roborace’s debut 
competition. Here multiple teams are 
pitched against one another in head 
to head races. The hardware of both 
the vehicles is managed centrally and 
is the same for each team, meaning 
that the only differentiator is the AI 
driver software the teams develop 
for the competition. For example, 
improved live path running, or modi-
fying LIDAR algorithms.

Roborace provides the teams with a 
base software layer. This is an entirely 
internal Automated Driving System 
(ADS), designed to be a starting point, 
a basis for various teams and projects 
to use and develop on top. The code 
is open source and available to all 
teams, and next to that Roborace 
provides an API to simplify software 
development.

Driving in the controlled environment 
of a racing circuit can remove much 
of the unpredictability and variability 
that cars encounter in the real world. 
Therefore, Roborace is looking to 
augment the tracks with obstacles 
(both real and virtual) to simulate re-
al-world environments. Furthermore, 
not needing to take care of passenger 
safety and user experience removes 
many other constraints. Roborace can 
focus on seeking the performance 
limits of their vehicles. That means 
their software is constantly learning 
the maximum new settings the vehi-
cles can use and learning the edge of 
performance possibilities live on the 
track in order to advance autonomous 
software at a faster rate.

Devbot and Robocar host a Nvidia 
Drive PX 2 computer, which is fairly 
common for autonomous vehicles. It’s 
a liquid-cooled machine that sports 
12 CPU cores and has 8 teraflops 
worth of processing power, enabling 
it to achieve 24 trillion operations a 
second. On top of that, to adjust to 
racing conditions, they’ve added a 
Speedgoat computer, common in mot-
orsport, to allow real-time processing 
aimed at increasing performance.

Furthermore, Roborace cars differ 
from normal autonomous vehicles in 
the abundance of sensors that have 
been included in order to provide a 
base system for multiple develop-
ment teams to work on. You don’t 
need that many cameras and the LI-

DARs and the GPS, but their availabil-
ity allows the teams to choose which 
system and setup they want to utilize 
for the race.

Looking forward, the big thing that 
will impact Roborace will be 5G. 
Roborace insists on having full, live 
data telemetry at all times, so they 
know exactly what the car is doing. 
Next to that they have a constant 
video stream. This means they have to 
create a 5G network around the entire 
racetrack. For each new race this 
requires several kilometers of fibre, 
numerous roadside units, and a lot of 
batteries.

Moving to 5G would allow the Rob-
orace cars to basically run anywhere 
assuming a network is available. 
Hugely reducing the time and work 
it takes to deploy these vehicles will 
enable to focus development on the 
cars’ software performance and on 
acquiring data. And that, according to 
Roborace, is exactly the area that in 
which autonomous vehicles need the 
most development; their software and 
testing various cases and situations.

Roborace is not only pioneering on a 

technical level. The company is also 
experimenting with future racing 
formats that combine the real and the 
virtual and Roborace explores how to 
bring this entertainment to a global 
fanbase. Their second season, Season 
Beta, will begin in 2020 with 5 com-
peting teams.[150]

“In an autonomous environment we 
don’t have to educate the driver.  
Instead we directly input those engi-
neering results into our software.”

Alan Cocks, 
Chief Engineer, Roborace,  
November 2019 [150]
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*On track, note that no specific top speed runs have been attempted. 
**At full racing performance, similar to a 1st generation Formula E car.

Type Robocar DevBot2.0

Perception  

Sensors

- LIDAR

- Ultrasonic sensors

- Front Radar,

- Cameras (5x)

- Military spec GPS  

(with antennas at both end  
of the car for heading)

Battery type Custom design, built by Rimac

Battery capacity 52 kwh 36 kwh

Peak voltage 729V 725V

Motor
4x integral powertrain CRB with 

each 135 kW (one per wheel)
2x integral powertrain CRB with 

each 135 kW

Total Power 540kW 270kW

Top speed (achieved) 300kph. 217 kph.*

Range 15-20 mins** 15 mins**
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At the start of the 2020s, the state 
of autonomous vehicles is such that 
they have achieved the ability to drive 
without human supervision and inter-
ference, albeit under strictly defined 
conditions. This so-called level 4, or 
high automation, has been reached 
among many unforeseen challenges 
for technology developers and scaled 
back projections.

No technology is yet capable of 
Level 5, full automation, and some 
experts claim this level will never be 
achieved. The most automated per-

sonal vehicles on the market perform 
at level 2, where a human driver still 
needs to monitor and judge when to 
take over control, for example with 
Tesla’s Autopilot. One major challenge 
towards full autonomy is that the 
environment (including rules, culture, 
weather, etc.) greatly influences the 
level of autonomy that vehicles can 
safely achieve, and performance in e.g. 
sunny California, USA, cannot easily 
be extrapolated to different parts of 
the world.

Beyond individual personal transpor-
tation, other areas in which auton-
omous vehicles will be deployed 
include public transportation, delivery 
& cargo, and specialty vehicles for 
farming and mining. And while all 
applications come with their own 
specific requirements, the vehicles 
all need to sense their environment, 
process input and make decisions, and 
subsequently take action. 

Generally, a mixture of passive (cam-
eras) and active (e.g. RADAR) sensors 
is used to sense the environment. Of 
all perception sensors, LIDAR is seen 

by most in the industry as a necessary 
element. Some are going against this 
conventional wisdom, including Tesla 
(relying on cameras RADAR, and ultra-
sound), Nissan, and Wayve (relying on 
cameras only). 

These sensors are all undergoing 
technological development to im-
prove their performance and increase 
efficiency. LIDAR sees the most inno-
vation, as it’s moving away from the 
traditional, relatively bulky and costly 
mechanical scanning systems. Newer 
solutions include microelectrome-
chanical mirrors (MEMS), and systems 
that do not use any mechanical parts; 
solid-state LIDAR, sometimes dubbed 
‘LIDAR-on-a-chip.’

For higher-level path planning (deter-
mining a route to reach a destination), 
different Global Navigation Satellite 
Systems beyond the American GPS 
have become available. By leveraging 
multiple satellite systems, augmen-
tation techniques and additional 
sensors to aid in positioning, sub-cen-
timeter accuracy for positioning can 
be achieved.

Another essential source of informa-
tion for many current autonomous 
vehicles are high definition maps that 
represent the world’s detailed fea-
tures with an accuracy of a decimeter 
or less. In contrast, some companies, 
including Tesla and Apple, envision a 
map-less approach.

For the whole process of simultane-
ously mapping the environment while 
keeping track of location (SLAM), 
combining data from multiple sources 
(sensor fusion), path planning and 

motion control two different AI ap-
proaches are generally used:

1. Sequentially, where the problem 
is decomposed into a pipeline 
with specific software for each 
step. This is the traditional, and 
most common approach.

2. An End-to-End (e2e) solution 
based on deep learning. End-to-
End learning increasingly gets 
interest as a potential solution 
because of recent breakthroughs 
in the field of deep learning.

For either architectural approach, 
various types of machine learning 
algorithms are currently being used: 
Convolutional Neural Networks (CNN), 
Recurrent Neural Networks (RNN) and 
Deep Reinforcement Learning (DRL) 
are the most common. These meth-
ods don’t necessarily sit in isolation 
and some companies rely on hybrid 
forms to increase accuracy and reduce 
computational demands.

In terms of processors, most AV com-
panies rely on GPU-accelerated pro-
cessing. However, increasingly differ-
ent solutions are becoming available, 
such as Tensor Processing Units (TPU) 
that are developed around the core 
workload of deep learning algorithms. 
More electronics, greater complexity, 
and increasing performance demands 
are met by semiconductor innovations 
that include smaller components 
and the use of novel materials like 
Gallium Nitride instead of silicon. 
Engineers also face questions about 
how much to distribute or centralize 
vehicles’ electrical architecture. 

Summary
To increase the available data for au-
tonomous driving systems to act upon 
and increase safety, vehicles need to 
share information with other road 
participants, traffic infrastructure, and 
the cloud.

For this ‘Vehicle-to-Everything’ (V2X) 
communication, two major network-
ing technologies can be chosen:

1. Dedicated short-range commu-
nication (DSRC), based on a WiFi 
standard,

2. Cellular V2X (C-V2X), which for AV 
applications needs to be based 
on 5G.

At the moment both DSRC and C-V2X 
are going through enhancements. The 
question whether DSRC or C-V2X is 
the best choice is a subject of debate. 

Due to its rapid progress and per-
formance, the latter is increasingly 
preferred, and experts express that 
DSRC won’t sufficiently support some 
key AV features.

In parallel with technological devel-
opment, user experience design is 
an important factor for autonomous 
vehicles. For lower level automated 
vehicles, where humans at times 
have to take control and drive, mode 
confusion can arise when the state of 
the vehicle is unclear, e.g. whether au-
tonomous driving is active or not.

Other key challenges for user expe-
rience design are trust-building and 
communicating the intentions of 
self-driving vehicles. Internally, for 
the passengers, human driver behav-
ior is often emulated on displays. For 

external communication companies 
are researching displays with words 
or symbols to substitute the human 
interaction that people heavily rely on 
when participating in traffic.

Wevolver’s community of engineers 
has expressed a growing interest in 
autonomous vehicle technology, and 
hundreds of companies, from start-
ups to established industry leaders, 
are investing heavily in the required 
improvements. Despite a reckoning 
with too optimistic expectations it’s 
expected we will see continuous in-
novation happening and autonomous 
vehicles will be an exciting field to 
follow and be involved in.

“The corner cases involving bad weather, poor infrastruc-
ture, and chaotic road conditions are proving to be tre-
mendously challenging. Significant improvements are still 
required in the efficacy and cost efficiency of the existing 
sensors. New sensors, like thermal, will be needed which 
have the ability to see at night and in inclement weath-
er. Similarly, AI computing must become more efficient as 
measured by meaningful operations (e.g. , frames or infer-
ences) per watt or per dollar.”

Drue Freeman,  
CEO of the Association for Corporate Growth, 
Silicon Valley, and former Sr. Vice President 
of Global Automotive Sales & Marketing for 
NXP Semiconductors, December 2019 [151]
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Nexperia is a global semiconductor 
manufacturer with over 11,000 em-
ployees, headquartered in Nijmegen, 
the Netherlands. Nexperia owns 5 
factories: 2 wafer fabs in Hamburg 
(Germany) and Manchester (UK), as 
well as assembly centers in China, 
Malaysia, and the Philippines. They 
produce over 90 Billion units per year. 
According to Nexperia, virtually every 
electronic design in the world uses 
Nexperia parts. Their product range 
includes Discretes, MOSFETs, and 
Analog & Logic ICs.

In 2017, Nexperia spun out of NXP 
where it formed Standard Products 
business unit, to become its own, 
independent company. NXP itself 
was formerly Philips Semiconductors, 
effectively giving Nexperia over 60 
years of experience.

According to the company, miniatur-
ization, power efficiency, and protec-
tion & filtering are the 3 major engi-
neering challenges Nexperia aims to 
support with its products. Its portfolio 
consists of over 15.000 different 
products, and more than 800 new 
ones are added each year. Recently 
Nexperia launched Gallium Nitride 
(GaN) based high voltage power FETs 
as an alternative to traditional silicon 
based high voltage MOSFETs.

The automotive sector is Nexperia’s 
most important market, and the 
company supplies to many key players 
in the field of autonomous vehicles. 
Those include OEMs like Hyundai, 
pioneering AV technology developers 
like Aptiv, and tier 1 suppliers like 
Bosch, Continental, Denso and Valeo.

Nexperia products show up in many 
areas of contemporary vehicles: 
In the powertrain they are part of 
components like converters, inverters, 
engine control units, transmission, 
and batteries. In the interior they 
enable infotainment and comfort & 
control applications such as HVAC 
(heating ventilation and air condition-
ing) and power windows. Furthermore, 
Nexperia powers ADAS systems such 
as adaptive cruise control, and is ex-
pected to be a major supplier for the 
autonomous vehicle industry.

About Nexperia

Two automotive semiconductor components produced by Nexperia. Image: Nexperia.

MOSFETs produced by Nexperia.
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Wevolver is a digital media platform 
& community dedicated to helping 
people develop better technology. At 
Wevolver we aim to empower people 
to create and innovate by providing 
access to engineering knowledge.

Therefore, we bring a global audience 
of engineers informative and inspir-
ing content, such as articles, videos, 
podcasts, and reports, about state of 
the art technologies.

We believe that humans need innova-
tion to survive and thrive. Developing 
relevant technologies and creating 
the best possible solutions require an 
understanding of the current cutting 
edge. There is no need to reinvent the 
wheel.

We aim to provide access to all 
knowledge about technologies that 
can help individuals and teams devel-
op meaningful products. This infor-

mation can come from many places 
and different kinds of organizations: 
We publish content from our own 
editorial staff, our partners like MIT, 
or contributors from our engineering 
community. Companies can sponsor 
content on the platform.

Our content reaches millions of 
engineers every month. For this work 
Wevolver has won the SXSW Innova-
tion Award, the Accenture Innovation 
Award, and the Top Most Innovative 
Web Platforms by Fast Company.

Wevolver is how today’s engineers 
stay cutting edge.

About Wevolver
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Collaboratively written by experts from 
across the autonomous vehicle field, this 
report provides a comprehensive under-
standing of the current cutting edge.

It’s for engineers who need to deepen 
their knowledge, for leaders who want to 
grasp the technological challenges and 
breakthroughs, and for all who are inter-
ested in learning how many fascinating 
technologies come together to create the 
innovations that change our future.
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