

SURI SIR IIT BOMBAY

ACCORDING TO PHYSICS... THE GLASS IS NEVER EMPTY

LIKE SHARE SUBSCRIBE
(o) njoy_suri

Harsh Sir

Theory Class: Monday
\& Thursday (9pm) MCQ Class:
Wednesday (8pm)

Suri Sir
Theory Class:
Wednesday \& Saturday
(9pm)
MCQ Class: Monday (8pm)

Arvind Sir

Theory Class: Tuesday \& Friday (9pm)
MCQ Class: Thursday (8pm)

Daily Schedule JEE 2021

Vedantu JEE 2021 Program

-F E A T URES-

$\rightarrow \mathbf{2 5 0 0}+$ hours of LIVE online teaching
$\rightarrow \mathbf{4 5 +}$ Teachers; from Top IITs and 10+ years experience
$\rightarrow 750$ Tests \& 3000 Assignments for Practical Application
\rightarrow Instant Doubt Solving By Academic Mentors
\rightarrow Replay/Recording of Classes If You've Missed
\rightarrow Rank Booster Quizzes

Boost your

 learning with Vedantu Pro
vdnt.in/YTJEE21

Enroll for FREE

\rightarrow Previous Paper Analysis

v JEE

SUBSCRIBE

Electric dipole (moment + torque + energy)

Lesson plan

\rightarrow Dipole moment
\rightarrow Torque
\rightarrow Potential energy

Two equal and opposite charges separated by a small distance is called electric dipole

Dipole moment:

$$
p=q(2 a)
$$

Electrie ilipole in a uniform fieli

Torque

Electrie dipole in a uniform field

Potential energy

JEE Mains Crash Course

-F E A T URES-

$\rightarrow \mathbf{9 0}$ Live Classes By Best Teachers

- 3 sessions everyday - Mon to Sat for 6 weeks

Batch Starts on: 27 ${ }^{\text {th }}$ April 2020
$\rightarrow \mathbf{2 0 +}$ Comprehensive Tests; Assignments \& Detailed Analysis
\rightarrow Doubt Solving By Academic Mentors
\rightarrow Replay/Recording of Classes If You've Missed
\rightarrow Important Tips \& Tricks To Crack JEE
\rightarrow In class Rank Booster Quizzes
\rightarrow Previous Paper Analysis

JEE

 Crash Course

 Crash Course}

Vedantu
Learn LIVE Online

Lightning Deal: $₹=24099 \longrightarrow$ F 5999

Use Coupon Code: SMCO
 Buy Now @ https://vdnt.in/JEECCE

How to Avail The Lightning Deal

Visit the link mentioned below

https://vdnt.in/JEECCE

ENROLL NOW

Step-1:
Click on "ENROLL NOW"
Step -2:
Click on "I have a coupon code" Step-3:
Apply Coupon SMCO

An electric dipole is kept in non-uniform electric field. It experiences

A A force and a torque
B A force but not a torque
C A torque but not a force
D Neither a force nor a torque

A system has two charges $\mathrm{q}_{\mathrm{A}}=2.5 \times 10^{-7} \mathrm{C}$ and $\mathrm{q}_{\mathrm{B}}=-2.5 \times 10^{-7} \mathrm{C}$ located at points A : $(0,0,-0.15 \mathrm{~m})$ and $B ;(0,0,+0.15 \mathrm{~m})$, respectively. What is the net charge and electric dipole moment of the system?

Determine the electric dipole moment of the system of three charges, placed on the vertices of an equilateral triangle, as shown in the figure (jee 2019)

A $\sqrt{3} g l \frac{\hat{j}-\hat{i}}{\sqrt{2}}$
B $(q l) \frac{\hat{i}+\hat{j}}{\sqrt{2}}$
C $2 q l \hat{j}$

D $\quad-\sqrt{3} q l \hat{j}$

An electric dipole consisting of two opposite charges of $2 \times 10^{-6} \mathrm{C}$ each separated by a distance of 3 cm is placed in an electric field of $2 \times 10^{5} \mathrm{~N} / \mathrm{C}$. The maximum torque on the dipole will be

A $12 \times 10^{-1} \mathrm{Nm}$
B $\quad 12 \times 10^{-3} \mathrm{Nm}$
C $24 \times 10^{-1} \mathrm{Nm}$

D $24 \times 10^{-3} \mathrm{Nm}$

For a dipole $\mathrm{q}=2 \times 10^{-6} \mathrm{C}$ and $\mathrm{d}=0.01 \mathrm{~m}$. Calculate the maximum torque for this dipole if $\mathrm{E}=5 \times 10^{5} \mathrm{~N} / \mathrm{C}$

A $1 \times 10^{-3} \mathrm{Nm}^{-1}$
B $\quad 10 \times 10^{-3} \mathrm{Nm}^{-1}$
C $10 \times 10^{-3} \mathrm{Nm}$
D $1 \times 10^{2} \mathrm{Nm}^{2}$

An electric dipole of moment \vec{p} is placed normal to the lines of force of electric intensity \vec{E}, then the work done in deflecting it through an angle of 180° is

A pE
B +2 pE
C -2 pE
D Zero

An electric dipole of length 1 cm is placed with the axis making an angle of 30° to an electric field of strength $10^{4} \mathrm{NC}^{-1}$. If it experiences a torque of $10 \sqrt{ } 2$ Nm , the potential energy of the dipole is:

A 0.245 J
B 0.0245 J
C 245.0J
D 24.5 J
Q. Two charges $+3.2 \times 10^{-19} \mathrm{C}$ and $-3.2 \times 10^{-19} \mathrm{C}$ kept 2.4 m apart forms a dipole. If it kept in uniform electric field of intensity $4 \times 10^{-5} \mathrm{volt} / \mathrm{m}$ then what will be its electrical energy in equilibrium

A $+3 \times 10^{-23} \mathrm{~J}$
B $-3 \times 10^{-23} \mathrm{~J}$
C $-6 \times 10^{-23} \mathrm{~J}$
D $-2 \times 10^{-23} \mathrm{~J}$

Join Vedantu JEE

 Telegram channel NOW!Assignments
Notes
Daily Update

https://vdnt.in/JEEVedantu
Link in Bio

, yes
 CRACK JEE

 LIKESHARE
\#LearningWon'tStop

