

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Operations for serverless

O P E 0 7

Chandra S Allaka

Senior Consultant

Amazon Web Services

Agenda

Why is operations for serverless different?

Key challenges and solutions

• Dependency management

• Issue identification and resolution

• Change and release management

Serverless is the new normal

Increase
business agility

Optimise costs by

paying only for

what you use

Reduce

undifferentiated

heavy lifting

Why is operations for serverless different?

Presentation

Application

Database

100s of

microservices

Amazon DynamoDB

Amazon
SQS

Amazon API
GatewayScale

Short-lived, dynamic and

independent

High velocity of change

Key operational challenges

OC 1

Dependency management

OC 2

Issue identification and resolution

OC 3

Change and release management

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Key operational challenges

OC 1

Dependency management

OC 2

Issue identification and resolution

OC 3

Change and release management

Dependency management – why to manage
dependencies?

Failure impact analysis

Faster issue resolution

Security impact

Change risk management

Let’s look at this sample application

A simple online

feedback application

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Application architecture

feedback

Amazon

SQS

db-push

Amazon

DynamoDB

Amazon API

Gateway

add-comments

get-comments

Identifying dependencies

Lambda Name: get-comments

Version: 1.0

DynamoDB Table: Chat

Version: 1.0

“Extracts data from”

Node

Node

Relationship

Amazon

DynamoDB
Amazon

SQS

AWS
Lambda

AWS
Lambda

Amazon API

Gateway

AWS
Lambda

Service/application map illustration

Online-feedback

Object_Name: <Name>

Type: Lambda Function

Version: <Number>

ID: <Identifier>

Description: <Purpose>

Support: Support Email DL

Relationship: <Name>

ID: <Identifier>

Description:

<Purpose>

feedback

add-comments

comments-queue

db-push

chatget-comments

Object_Name: <Name>

Type: DynamoDB Table

Version: <Number>

ID: <Identifier>

Description: <Purpose>

Support: Support Email DL

Dependency management – solution overview

AWS Serverless

environments

Tags/extract from

CloudWatch logs

Tags are updated with

dependency info

(OR)

Input the service

dependency info in logs

Service

dependency

info in

GraphQL

S3 Bucket

Config Store

(Neptune DB)
ServiceMap via Graph

Visualisation tool

Building dependency matrix

Upstream:

Downstream:

Fn:<function name-version, function name-version>;

Fn:<function name-version>;SQS:<SQS Queue name>

Sample tagging mechanism to identify dependencies

Identifying the dependencies from the graph db

gremlin> g.V().has('name', 'add-
comments').out('depends').valueMap()

==>{name=[comments-queue]}

Dependency management – key take away

Dependency management is key to issue resolution and change control

Build mechanisms to identify function dependencies

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Key operational challenges

OC 1

Dependency and change management

OC 2

Issue identification and resolution

OC 3

Change and release management

feedback

Amazon

SQS

db-push

Amazon

DynamoDB

Amazon API

Gateway

Add-comments

get-comments

Application architecture of the demo app

But applications break invariably

How do you identify where the application breaks?

Amazon

SQS

DB Push

Amazon

DynamoDB

Amazon API

Gateway

Application architecture of the demo app

get-comments

add-comments

feedback

100 +

microservices

And the challenges grow with scaling…

Traditional monitoring must evolve to manage these
challenges

Short-lived

resources

Devices

Monolithic to

microservice

Faster release

velocity

Full stack

visibility

Introducing observability

“The system attribute that provides the

measure of how well internal states of a

system can be inferred from knowledge of

its external outputs”
Wikipedia

Introducing observability

“The system attribute that provides the

measure of how well internal states of a

system can be inferred from knowledge of

its external outputs”

Visibility

In-built

Wikipedia

Visibility requires metrics, logs and traces

CloudWatch Metrics AWS X-Ray TracesCloudWatch Logs

“The system attribute that provides the measure of how well internal states

of a system can be inferred from knowledge of its external outputs”

Metrics

Pre-built

metrics

Custom metrics and

Log Filters

Logs

Structured

logging

Correlation across

the landscape

Log

insights

Structured logging

Standardise logging

across the functions

through a custom

logger

Easy to query across

the log files

Sample Structured Log

{

"timestamp": "2019-11-26 18:17:33,774",

"level": "INFO",

"service": "booking",

"lambda_function_arn": "arn:aws:lambda:xxx:acct:function:test",

"correlation_id": "1234-xyzd-abcd",

"lambda_request_id": "52fdfc07-2182-154f-163f5f0f9a621d72",

“key_activity”: “Update DB”

"message": {

"operation": "update_item",

"details:": { …. },

"ResponseMetadata": {

"RequestId": "GNVV4KQNSO5AEMVJF66Q9ASUAAJG",

"HTTPStatusCode": 200,

"HTTPHeaders": { },

}

}

Log correlation

def index(event, context):

add-comments Amazon

SQS

db-push

Amazon

DynamoDB

Amazon API

Gateway

logger.info("API Gateway Request ID : " +
event['requestContext']['requestId'])

Request-ID

Tracing – AWS – X-Ray

Review request behavior

Discover application issues

Find bottlenecks to improve
application performance

Client

avg. 136ms

1 t/min

avg. 3ms

1 t/min

AWS::Lambda AWS::Lambda::Function

Issue identification and resolution – key take away

Custom monitoring via CloudWatch Metric filters

Structured Logging

Log Correlation

Instrument for tracing

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Key operational challenges

OC 1

Dependency and change management

OC 2

Issue identification and resolution

OC 3

Change and release management

Change and release management

Traditional change management processes and mechanisms need to
evolve to manage rapid changes in a serverless environment.

• High frequency of changes

• Multiple moving parts

• Lot more dependencies

Change classification and process transformation

Frequency

Impact

High frequency low

impact changes

Low

High

HighLow

Change and release process transformations

Adopt change ‘pull’ mechanisms

Release process transformation

More small and frequent changes

Change and release management – key take away

Classify the changes

Small and frequent changes

Optimise existing processes – Reduce risks
through versioning, canary deployment features

Summary and call to action

Realise that operations
for serverless is different

Design and build with
operations in mind

Thank you!

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Chandra S Allaka

callaka@amazon.com

