

SURI SIR IIT BOMBAY

ACCORDING TO PHYSICS...
THE GLASS IS NEVER EMPTY

SUBSGRIBE
njoy_suri

Harsh Sir

Theory Class: Monday \& Thursday (9pm) MCQ Class:
Wednesday (8pm)

Suri Sir

Theory Class:
Wednesday \& Saturday (9pm)
MCQ Class: Monday
(8pm)

Arvind Sir

Theory Class: Tuesday
\& Friday (9pm)
MCQ Class: Thursday (8pm)

Daily Schedule JEE 2021

Vedantu
 JEE

SUBSCRIBE

Vedantu JEE 2021 Program

-F E A T URES-

$\rightarrow \mathbf{2 5 0 0}+$ hours of LIVE online teaching
$\rightarrow \mathbf{4 5 +}$ Teachers; from Top IITs and 10+ years experience
$\rightarrow 750$ Tests \& 3000 Assignments for Practical Application
\rightarrow Instant Doubt Solving By Academic Mentors
\rightarrow Replay/Recording of Classes If You've Missed
\rightarrow Rank Booster Quizzes

Boost your learning with Vedantu Pro
 vdnt.in/YTJEE21

Enroll for FREE
\rightarrow Previous Paper Analysis

Learn LIVE Online

Electric field and potential

Quiz

Q. A uniform field of $100 \sqrt{2} \mathrm{~V} / \mathrm{m}$ is directed at 45° above the x -axis as shown in figure. The potential difference $V_{B}-V_{A}$ is given by

A 2.8 V

B 4 V

C 6.4 V

D oV

Q. The electric potential V at any point $\mathrm{O}(\mathrm{x}, \mathrm{y}, \mathrm{z}$ all in metres) in space is given by $\mathrm{V}=4 \mathrm{x}^{2}$ volt. The electric field at the point ($1 \mathrm{~m}, 0,2 \mathrm{~m}$) in volt/metre is

A 8 long negative X -axis
B 8 long positive X -axis

C 16 long negative X -axis
D 16 long positive Z -axis
Q. A uniform electric field having a magnitude E_{0} and direction along the positive X -axis exists. If the potential V is zero at $\mathrm{x}=0$, then its value of $\mathrm{X}=+\mathrm{X}$ will be

A $\mathrm{V}_{(\mathrm{x})}=+\mathrm{xE}_{0}$
B $V_{x}=-\mathrm{xE}_{0}$
C $\mathrm{V}_{\mathrm{x}}=+\mathrm{x}^{2} \mathrm{E}_{0}$
D $V_{x}=-x^{2} E_{0}$
Q. The electric potential V is given as a function of distance x (metre) by $V=$ $\left(5 x^{2}+10 x-9\right)$ volt. Value of electric field at $x=1$ is

A $\quad 20 \mathrm{~V} / \mathrm{m}$

B $6 \mathrm{~V} / \mathrm{m}$

C $11 \mathrm{~V} / \mathrm{m}$

D $-23 \mathrm{~V} / \mathrm{m}$
Q. The displacement of a charge Q in the electric field $\mathrm{E}=e_{1} \hat{i}+e_{2} \hat{j}+e_{3} \hat{k}$ is $\hat{r}=a \hat{i}+b \hat{j}$. The work done is

A $\quad Q\left(\mathrm{ae}_{1}+\mathrm{be}_{2}\right)$
B $\quad Q \sqrt{\left(a e_{1}\right)^{2}+\left(b e_{2}\right)^{2}}$
C $Q\left(e_{1}+e_{2}\right) \sqrt{a^{2}+b^{2}}$
D $\quad Q \sqrt{e_{1}^{2}+e_{2}^{2}}(a+b)$
Q. Assume that an electric field $\mathrm{E}=30 \mathrm{x}^{2} \hat{i}$ exists in a space. Then, the potential difference $V_{A}-V_{0}$, where V_{0} is the potential at the origin and V_{A} the potential at $\mathrm{x}=2 \mathrm{~m}$

$$
\begin{aligned}
& \text { A } 120 \mathrm{~J} / \mathrm{C} \\
& \text { B }-120 \mathrm{~J} / \mathrm{C} \\
& \text { C }-80 \mathrm{~J} / \mathrm{C}
\end{aligned}
$$

D $80 \mathrm{~J} / \mathrm{C}$
Q. The electric field in a certain region is given by $\vec{E}=5 \hat{i}-3 \hat{j} \mathrm{KV} / \mathrm{m}$. Find the potential difference $V_{B}-V_{A}$ between points A and B, having coordinates $(4,0,3)$ and $(10,3,0)$ respectively.

A $-21 k v$

B 23 kv

C 20kv

D -22 kv

JEE Mains Crash Course

-F E A T U R E S -

$\rightarrow \mathbf{9 0}$ Live Classes By Best Teachers

- 3 sessions everyday - Mon to Sat for 6 weeks

Batch Started on: $27^{\text {th }}$ April 2020
$\rightarrow 20+$ Comprehensive Tests; Assignments \& Detailed Analysis
\rightarrow Doubt Solving By Academic Mentors
\rightarrow Replay/Recording of Classes If You've Missed
\rightarrow Important Tips \& Tricks To Crack JEE
\rightarrow In class Rank Booster Quizzes
\rightarrow Previous Paper Analysis

JEE

 Crash Course

 Crash Course}

Lightning Deal: ₹ $24099 \longrightarrow$ ₹ 5999

Use Coupon Code: SMCC Buy Now @ https://vdnt.in/JEECCE

How to Avail The Lightning Deal

Visit the link mentioned below
https://vdntin/JEECCE

ENROLL NOW

Step-1:
Click on "ENROLL NOW" Step-2:
Click on "I have a coupon code" Step-3:
Apply Coupon SMCO
Q. The electric potential existing in space is $\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{A}(\mathrm{xy}+\mathrm{yz}+\mathrm{zx})$.
a) Find the expression for the electric field.
b) If A is 10 SI units, find the magnitude of the electric field at ($1 \mathrm{~m}, 1 \mathrm{~m}, 1 \mathrm{~m}$)
Q. A uniform electric field field exist in $x-y$ plane. The potential of points $\mathrm{A}(2 \mathrm{~m}, 2 \mathrm{~m}), \mathrm{B}(-2 \mathrm{~m}, 2 \mathrm{~m})$ and $\mathrm{C}(2 \mathrm{~m}, 4 \mathrm{~m})$ are $4 \mathrm{~V}, 16 \mathrm{~V}$ and 12 V respectively. The electric field is

A $(4 \hat{i}+5 \hat{j}) V / m$
B $(3 \hat{i}+4 \hat{j}) V / m$
C $-(3 \hat{i}+4 \hat{j}) V / m$
D $(3 \hat{i}-4 \hat{j}) V / m$
Q. A charge $\mathrm{q}=8.75 \mu \mathrm{C}$ in an electric field is acted upon by a force $\mathrm{F}=4.5 \mathrm{~N}$, the potential gradient at this point is :

A $3.70 \times 10^{5} \mathrm{Vm}^{-1}$
B $5.14 \times 10^{3} \mathrm{Vm}^{-1}$

C $5.14 \times 10^{4} \mathrm{Vm}^{-1}$
D $5.14 \times 10^{5} \mathrm{Vm}^{-1}$
Q. If V_{0} is the potential at the origin in an electric field $\vec{E}=E_{x} \hat{i}+E_{y} \hat{j}$, the potential at the point (x, y) is :

A $V_{o}-x E_{x}-y E_{y}$

B $V_{o}+x E_{x}+y E_{y}$

C $\mathrm{xE}_{\mathrm{x}}+\mathrm{yE}_{\mathrm{y}}-\mathrm{V}_{\mathrm{o}}$
D $\left(\sqrt{x^{2}+y^{2}}\right)\left(\sqrt{E_{x}^{2}+E_{y}^{2}}\right)-V_{0}$
Q. The potential difference V_{AB} between $\mathrm{A}(0,0,0)$ and $\mathrm{B}(1,1,0)$ in an electric field $\vec{E}=x \hat{i}+z \hat{k}$, is:

A 1 V
B $\frac{3}{2} V$
C $\frac{1}{2} V$
D 2 V
Q. In a region the electric potential is given by $V=2 x+2 y-3 z$ obtain the expression for electric field :

A $\quad-2 \hat{i}-2 \hat{j}+3 \hat{k}$
B $3 \hat{i}+4 \hat{j}-2 \hat{k}$
C $2 \hat{i}-2 \hat{j}-3 \hat{k}$
D None of these
Q. Electric field in a plane varies like $(2 x \hat{i}+2 \hat{y}) N / C$. If potential at infinity is taken as zero, potential at $\mathrm{x}=2 \mathrm{~m}, \mathrm{y}=2 \mathrm{~m}$ is:

A 8 V

B -8 V

C zero

D infinity
Q. In a uniform electric field, the potential is 10 V at the origin of coordinates and 8 V at each of the points $(1,0,0),(0,0,1)$. The potential at the point $(1,1,1)$ will be

A 0

B 4 V

C 8 V

D 10 V

Relation between Electric Field and Potential IIT JEE | JEEt Lo 2021 for Class 12 | Vedantu JEE

Vedantu JEE

Electric Field and Potential IIT JEE Quiz | JEEt Lo 2021 | JEE Main 2021 | JEE Physics | Vedantu JEE

Vedantu JEE • Scheduled for 5/4/20, 8:00 PM

Electrostatics IIT JEE - Electric Field IIT JEE Quiz | JEEt Lo 2021 | JEE Main Physics | Vedantu JEE

Vedantu JEE

Electric Potential \& Potential Energy - Electrostatics IIT JEE | JEEt Lo 2021 for Class 12 | Vedantu

Vedantu JEE

Electric Field for Rod/Ring/Spheres - Electrostatics IIT JEE | JEEt Lo 2021 for Class 12 | Vedantu

Vedantu JEE

Electric Field and It's Properties - Electrostatics IIT JEE | JEEt Lo 2021 | JEE Physics | Vedantu

Vedantu JEE

Coulomb's Law and Basic Problems - Electrostatics IIT JEE | JEEt Lo 2021 |
JEE Physics | Vedantu JEE
41:13
Vedantu JEE

Join Vedantu JEE

 Telegram channel NOW!Assignments
Notes
Daily Update

https://vdnt.in/JEEVedantu
Link in Bio

CRACK JEE

ת LIKE

SUBSCRIBE

\#LearningWon'tStop

