ARVIND SUTHAR

IIT ROORKEE
5+ YEARS EXPERIENCE
"The Shortest Distance Between
Two Points is a STRAIGHT LINE"
3

N JE

SUBSGRIBE

Q1. If the roots of the equation $a x^{2}+b x+$ $\mathrm{c}=0$ are in the ratio $\mathrm{m}: \mathrm{n}$, then

A $\quad m n b^{2}=a c(m+n)^{2}$
B $\quad b^{2}(m+n)=m n$
C $\quad \mathrm{m}+\mathrm{n}=\mathrm{b}^{2} \mathrm{mn}$
D $\quad \mathrm{mnc}^{2}=\mathrm{ab}(\mathrm{m}+\mathrm{n})^{2}$

Q1. If the roots of the equation $a x^{2}+b x+$ $\mathrm{c}=0$ are in the ratio $\mathrm{m}: \mathrm{n}$, then

A $m n b^{2}=a c(m+n)^{2}$
B $\quad b^{2}(m+n)=m n$

C $\quad \mathrm{m}+\mathrm{n}=\mathrm{b}^{2} \mathrm{mn}$
D $\quad m n c^{2}=a b(m+n)^{2}$

Solution :

Let the roots are mr and nr
$m r+n r=\frac{-b}{a} \Rightarrow r(m+n)=\frac{-b}{a} \ldots .(1)$
and $m n r^{2}=\frac{c}{a} \quad \ldots \ldots \ldots \ldots .(2)$
Eliminating r, we get
$b^{2} m n=c a(m+n)^{2}$

Q2. The domain of definition of the function $y=3 e^{\sqrt{x^{2}-1}} \log (x-1)$ is

A $(1, \infty)$
B $[1, \infty)$

C $\quad R-\{1\}$
D $(-\infty,-1) \cup(1, \infty)$

Q2. The domain of definition of the function $y=3 e^{\sqrt{x^{2}-1}} \log (x-1)$ is

A $(1, \infty)$
B $\quad[1, \infty)$

C $\quad R-\{1\}$
D $(-\infty,-1) \cup(1, \infty)$

Solution :

$$
\begin{aligned}
& x^{2}-1 \geq 0 \\
& \Rightarrow x^{2} \geq 1 \\
& \Rightarrow x \in(-\infty,-1] \cup[1, \infty) \ldots \ldots(1) \\
& \text { and } x-1>0 \\
& \Rightarrow x>1 \\
& \Rightarrow x \in(1, \infty) \ldots \ldots \ldots .(2)
\end{aligned}
$$

From 1 and 2

$$
x \in(1, \infty)
$$

Vedantu Online Revolution
KAUN BOLA GHAR SE NAA HOPAYEGA?

JEE
 Crash Course

Lightning Deal: $₹ 24008 \longrightarrow$ ₹ 4499

Use Coupon Code: ASCC
Buy Now @ https://vdnt.in/JEECCE

How to Avail The Lightning Deal

Click on Enroll
Now

Click on "I have a Coupon Code"

Apply Coupon "ASCC"

ENROLLNOW

Q3. The value of $\int_{-1}^{1}(x-[x)) d x$ (where [.] denotes greatest integer function) is

A 0
B 1
C 2

D None of these

Q3. The value of $\int_{-1}^{1}(x-[x)) d x$ (where [.] denotes greatest integer function) is

A 0
B 1
C 2

D None of these

Solution :

$\int_{-1}^{1}(x-[x]) d x=\int_{-1}^{1} x d x-\int_{-1}^{1}[x] d x$
$=\left[\frac{x^{2}}{2}\right]_{-1}^{1}-\left[\int_{-1}^{0}[x] d x+\int_{0}^{1}[x] d x\right]$
$=\frac{1}{2}[1-1]-\left[\int_{-1}^{0}[-1] d x+\int_{0}^{1} 0 . d x\right]$
$\left[\begin{array}{l}I f-1 \leq x<0,[x]=-1 \\ \text { If } 0 \leq x<1,[x]=0\end{array}\right]$
$=0-[-x]_{-1}^{0}-0=0-[-0-(-1)]=1$

Q4. A flag - staff of 5 meters high stands on a building of 25 meters height. For an observer at a height of 30 meters, the flag-staff and the building subtend equal angles. The distance of the observer from the top of the flag - staff is

A $\frac{5 \sqrt{3}}{2} m$
B $5 \sqrt{\frac{3}{2} m}$
C $5 \sqrt{\frac{2}{3} m}$

D None of these

Q4. A flag - staff of 5 meters high stands on a building of 25 meters height. For an observer at a height of 30 meters, the flag-staff and the building subtend equal angles. The distance of the observer from the top of the flag - staff is

A $\frac{5 \sqrt{3}}{2} m$
(B) $5 \sqrt{\frac{3}{2} m}$

C $5 \sqrt{\frac{2}{3} m}$
D None of these

Solution :

We have $\tan \alpha=\frac{5}{x}$ and $\tan 2 \alpha=\frac{30}{x}$
$\therefore \tan 2 \alpha=\frac{30}{5 \cot \alpha} \Rightarrow \tan 2 \alpha=6 \tan \alpha$

Q5. If $R=\left\{(x, y) \mid x, y \in Z, x^{2}+y^{2} \leq 4\right\}$ is a relation in Z, then domain of R is

A $\{0,1,2\}$
B $\quad\{0,-1,-2\}$
C $\{-2,-1,0,1,2\}$

D None of these

Q5. If $R=\left\{(x, y) \mid x, y \in Z, x^{2}+y^{2} \leq 4\right\}$ is a relation in Z , then domain of R is

A $\{0,1,2\}$
$B \quad\{0,-1,-2\}$
C $\{-2,-1,0,1,2\}$

D None of these

Solution :

$\because R=\left\{(x, y) \mid x, y \in Z, x^{2}+y^{2} \leq 4\right\}$
$R=\left\{\begin{array}{l}(-2,0),(-1,0),(0,-1),(-1,1), \\ (1,-1),(0,-1),(0,1),(0,2), \\ (0,-2),(1,0),(0,1),(1,1), \\ (-1,-1),(2,0),(0,0)\end{array}\right\}$
Hence, Domain of

$$
R=\{-2,-1,0,1,2\}
$$

Q6. If 5^{97} is divided by 52 , then the remainder obtained is

A 3

B 5
C 4
D 0

Q6. If 5^{97} is divided by 52 , then the remainder obtained is

A 3

B 5
C 4
D 0

Solution:

We know that, $5^{4}=625=52 \times 12+1$
$\Rightarrow 5^{4}=52 \lambda+1$, where λ is a positive
int eger.
$\Rightarrow\left(5^{4}\right)^{24}=(52 \lambda+1)^{24}$
$={ }^{24} C_{0}(52 \lambda)^{24} \quad$ (by binomial theorem)
$+{ }^{24} C_{1}(52 \lambda)^{23}+{ }^{24} C_{2}(52 \lambda)^{22}+\ldots \ldots$.
$+{ }^{24} C_{23}(52 \lambda)+{ }^{24} C_{24}$
$\Rightarrow 5^{96}$
$=52\left[{ }^{24} C_{0} 52^{23} \lambda^{24}+{ }^{24} C_{1} 52^{23} \lambda^{22}+\ldots \ldots . .+1\right]$
$=($ a multiple of 52$)+1$
On multiplying both sides by 5 , we get
$5^{97}=5^{96} \cdot 5=5$ (a multiple of 52$)+5$
Hence, the required remainder is 5 .

Q7. If $y=4 x-5$ is tangent to the curve y^{2} $=p x^{3}+q$ at $(2,3)$ then (p, q) is

A $(2,7)$
B $(-2,7)$
C $(-2,-7)$
D $(2,-7)$

Q7. If $y=4 x-5$ is tangent to the curve y^{2} $=p x^{3}+q$ at $(2,3)$ then (p, q) is

A $(2,7)$
B $(-2,7)$
C $(-2,-7)$
D $(2,-7)$

Solution :

Curve is $y^{2}=p x^{3}+q$
$\therefore 2 y \frac{d y}{d x}=3 p x^{2}$
$\Rightarrow\left(\frac{d y}{d x}\right)_{(2,3)}=\frac{3 p .4}{2.3}$
$\Rightarrow 4=2 p$
$\Rightarrow p=2$
Also, curve is passing through $(2,3)$
$\therefore 9=8 p+q$
$\Rightarrow q=-7$
$\therefore(p, q)$ is $(2,-7)$

Q8. The number of discontinuity of the greatest integer function $f(x)=[x], x \in\left(-\frac{7}{2}, 100\right)$ is equal to

A 104
B 102
C 101
D 103

Q8. The number of discontinuity of the greatest integer function $f(x)=[x], x \in\left(-\frac{7}{2}, 100\right)$ is equal to

A 104
B 102
C 101
D 103

Solution :

Given , $f(x)=[x], x \in(-3.5,100)$
As we know greatest integer is discontinous on integer values.
In given interval , the interger values are $(-3,-2,-1,0, \ldots \ldots, 99)$
\therefore Total numbers of integers are 103 .

Q9. The number of ways of selecting 15 teams from 15 men and 15 women, such that each team consists of a man and a woman, is

A 1960

B 15 !

C $(15!)^{2}$
D 14 !

Q9. The number of ways of selecting 15 teams from 15 men and 15 women, such that each team consists of a man and a woman, is

A 1960
B 15 !
C $(15!)^{2}$
D 14 !

Q10. If the general solution of the differential equation $y^{\prime}=\frac{y}{x}+\varphi\left(\frac{x}{y}\right)$, for some function Φ, is given by $\mathrm{y} \mid \mathrm{lncx}=\mathrm{x}$ where c is an arbitrary constant, then φ (2) is equal to (here, $y^{\prime}=\frac{d y}{d x}$)

A -4
B $-\frac{1}{4}$
C $\frac{1}{4}$

D 4

Q10. If the general solution of the differential equation $y^{\prime}=\frac{y}{x}+\varphi\left(\frac{x}{y}\right)$, for some function Φ, is given by $\mathrm{y} \mid \mathrm{lncx}=\mathrm{x}$ where c is an arbitrary constant, then φ (2) is equal to (here, $y^{\prime}=\frac{d y}{d x}$)

A -4
B $-\frac{1}{4}$
C $\frac{1}{4}$

D 4

Solution :

$$
\begin{aligned}
& \text { given : } y^{\prime}=\frac{y}{x}+\varphi\left(\frac{x}{y}\right) \\
& \text { As } \\
& y \ln (c x)=x \Rightarrow y^{\prime} \ln (c x)+y \frac{1}{c x} c=1 \\
& \Rightarrow y^{\prime}\left(\frac{x}{y}\right)+\frac{y}{x}=1 \\
& \Rightarrow \frac{1-\left(\frac{y}{x}\right)}{\left(\frac{x}{y}\right)}=\left(\frac{y}{x}\right)+\varphi\left(\frac{x}{y}\right) \\
& x=2, y=1 \Rightarrow \frac{1-\left(\frac{1}{2}\right)}{\left(\frac{2}{1}\right)}=\left(\frac{1}{2}\right)+\varphi\left(\frac{2}{1}\right) \\
& \Rightarrow \varphi(2)=-\frac{1}{4}
\end{aligned}
$$

Q11. If $\sin ^{-1} \frac{1}{3}+\sin ^{-1} \frac{2}{3}=\sin ^{-1} x$, then the value of x is

A 0
B $\frac{(\sqrt{5}-4 \sqrt{2})}{9}$
C $\frac{(\sqrt{5}+4 \sqrt{2})}{9}$
D $\frac{\pi}{2}$

Q11. If $\sin ^{-1} \frac{1}{3}+\sin ^{-1} \frac{2}{3}=\sin ^{-1} x$, then the value of x is

A 0
B $\frac{(\sqrt{5}-4 \sqrt{2})}{9}$
C $\frac{(\sqrt{5}+4 \sqrt{2})}{9}$
D $\frac{\pi}{2}$

Solution :

Given that, $\sin ^{-1} \frac{1}{3}+\sin ^{-1} \frac{2}{3}=\sin ^{-1} x$,
Taking sine on both sides

$$
\begin{aligned}
& \Rightarrow\left(\frac{1}{3} \sqrt{1-\frac{4}{9}}+\frac{2}{3} \sqrt{1-\frac{1}{9}}\right)=x \\
& \Rightarrow\left(\frac{1}{3} \cdot \frac{\sqrt{5}}{3}+\frac{2}{3} \cdot \frac{\sqrt{8}}{3}\right)=x \\
& \Rightarrow\left(\frac{\sqrt{5}+4 \sqrt{2}}{9}\right)=x \\
& \therefore x=\left(\frac{\sqrt{5}+4 \sqrt{2}}{9}\right)
\end{aligned}
$$

Q12. If x and y are two distinct integers and n is a natural number than $x^{n}-y^{n}$ is divisible by

A $x^{2}-y^{2}$

B $\quad x+y$
C $x-y$

D None of these

Q12. If x and y are two distinct integers and n is a natural number than $x^{n}-y^{n}$ is divisible by

A $x^{2}-y^{2}$
B $\quad x+y$
C $x-y$

D None of these

Solution :

$P(n): x^{n}-y^{n}$ where $n \in N$
Then, $P(1): x-y$ is divisible $x-y$
$P(2): x^{2}-y^{2}$ is divisible $x-y$
$P(3): x^{3}-y^{3}$ is divisible $x-y$
Hence $x^{n}-y^{n}$ is divisible $x-y$

Q13. Number of roots of the equation $\cos ^{2} x+\frac{\sqrt{3}+1}{2} \sin x-\frac{\sqrt{3}}{4}-1=0$ which lie in the interval $[-\pi, \pi]$ is

A 2

B 4

C 6

D 8

Q13. Number of roots of the equation $\cos ^{2} x+\frac{\sqrt{3}+1}{2} \sin x-\frac{\sqrt{3}}{4}-1=0$ which lie in the interval $[-\pi, \pi]$ is

A 2

B 4
C 6
D 8

Solution :

Given equation is
$1-\sin ^{2} x+\frac{\sqrt{3}+1}{2} \sin x-\frac{\sqrt{3}}{4}-1=0$
$\Rightarrow \sin ^{2} x-\frac{\sqrt{3}+1}{2} \sin x+\frac{\sqrt{3}}{4}=0$;
$4 \sin ^{2} x-2 \sqrt{3} \sin x-2 \sin x+\sqrt{3}=0$
$2 \sin x(2 \sin x-\sqrt{3})-(2 \sin x-\sqrt{3})=0$
$\Rightarrow(2 \sin x-1)(2 \sin x-\sqrt{3})=0$
On solving we get $\sin x=\frac{1}{2} ; \frac{\sqrt{3}}{2}$
$x=\frac{\pi}{6}, \frac{5 \pi}{6} ; \frac{\pi}{3}, \frac{2 \pi}{3}$

Q14. Suppose that side lengths of a triangle are three consecutive integers and one of the angles is twice another. The number of such triangles is/are

A 1

B 0

C 4

D 2

Q14. Suppose that side lengths of a triangle are three consecutive integers and one of the angles is twice another. The number of such triangles is/are

A 1
B 0

C 4

D 2

Solution :

Let $B=2 A$ and $B D$ be the bisector of angle
B, then
$C D=\frac{a b}{a+c} \& A D=\frac{b c}{a+c}$
Now, $\triangle A B C$ and $\triangle B D C$ are similar,
So
$\frac{B C}{A C}=\frac{C D}{B C} \Rightarrow a^{2}=\frac{a b}{a+c} b \Rightarrow b^{2} \ldots$
$=a(a+c)$

Since, $b>a \Rightarrow$ Either $b=a+1$ or
$b=a+2$, if $b=a+1$, then [From Eq. (i)]
$(a+1)^{2}=(a+c) a \Rightarrow c=2+\frac{1}{a}$
c is integer $\Rightarrow a=1, b=2, c=3$ but then,
no triangle will form.
If $b=a+2$. then obviouslv $c=a+1$.
$(a+2)^{2}=a(2 a+1)$
$\Rightarrow a^{2}-3 a-4=0$ or $a=4$
$\therefore a=4, b=6, c=5$ is the only possible solution.

Q15. If $x=33^{n}, n$ is a positive integral value, then the probability that x will have 3 at its units place is

A $\frac{1}{3}$
B $\frac{1}{4}$
C $\frac{1}{5}$
D $\frac{1}{2}$

Q15. If $x=33^{n}, n$ is a positive integral value, then the probability that x will have 3 at its units place is

A $\frac{1}{3}$
(B) $\frac{1}{4}$

C $\quad \frac{1}{5}$
D $\frac{1}{2}$

Solution :

Given that, $x=33^{n}$
Where, n is a positive integral value.
Here, only four digits may be at the unit
place $i e ., 1,3,7,9$.
$\therefore n(S)=4$
Let E be the event of getting 4 at its units place.
$\therefore n(E)=1$
$\therefore P(E)=\frac{n(E)}{n(S)}=\frac{1}{4}$

Q16. The area bounded by the curves $y=(x-1)^{2}, y=(x+1)^{2}$ and $y=\frac{1}{4}$ is

A $\quad \frac{1}{3}$ sq unit
B $\quad \frac{2}{3}$ sq unit
C $\quad \frac{1}{4}$ sq unit
D $\frac{1}{5}$ sq unit

Q16. The area bounded by the curves $y=(x-1)^{2}, y=(x+1)^{2}$ and $y=\frac{1}{4}$ is

A $\frac{1}{3}$ sq unit
B $\quad \frac{2}{3}$ sq unit
C $\quad \frac{1}{4}$ sq unit
D $\quad \frac{1}{5}$ sq unit

Solution :

The curves
$y=(x-1)^{2}, y=(x+1)^{2}$ and
$y=\frac{1}{4}$ are shown as
where point of intersection are

$$
\begin{aligned}
& (x-1)^{2}=\frac{1}{4} \\
& \Rightarrow x=\frac{1}{2}
\end{aligned}
$$

$\operatorname{and}(x+1)^{2}=\frac{1}{4} \Rightarrow x=-\frac{1}{2}$
$\therefore Q\left(\frac{1}{2}, \frac{1}{4}\right)$ and $R\left(-\frac{1}{2}, \frac{1}{4}\right)$
\therefore Required area
$=2 \int_{0}^{\frac{1}{2}}\left[(x-1)^{2}-\frac{1}{4}\right] d x=2\left[\frac{(x-1)^{2}}{3}-\frac{1}{4} x\right]_{0}^{\frac{1}{2}}$
$=2\left[-\frac{1}{8.3}-\frac{1}{8}-\left(-\frac{1}{3}-0\right)\right]=\frac{8}{24}$
$=\frac{1}{3}$ sq unit

Q17. If $y=\log _{10} x+\log _{x} 10+\log _{x} x+\log _{10} 10$, then $\frac{d y}{d x}$ is equal to

A $\frac{1}{x \log _{e} 10}-\frac{\log _{e} 10}{x\left(\log _{e} x\right)^{2}}$
B $\frac{1}{x \log _{e} 10}-\frac{1}{x \log _{10} e}$
C $\frac{1}{x \log _{e} 10}-\frac{\log _{e} 10}{x\left(\log _{e} x\right)}$
D None of these

Q17. If $y=\log _{10} x+\log _{x} 10+\log _{x} x+\log _{10} 10$, then $\frac{d y}{d x}$ is equal to

A $\frac{1}{x \log _{e} 10}-\frac{\log _{e} 10}{x\left(\log _{e} x\right)^{2}}$
B $\frac{1}{x \log _{e} 10}-\frac{1}{x \log _{10} e}$
C $\frac{1}{x \log _{e} 10}-\frac{\log _{e} 10}{x\left(\log _{e} x\right)}$
D None of these

Solution :

$$
\begin{aligned}
& y=\log _{10} x+\log _{x} 10+\log _{x} x+\log _{10} 10 \\
& =\log _{10} x+\frac{\log _{0} 10}{\log _{e} x}+1+1 \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{x} \log _{10} e-\frac{\log _{e} 10}{x\left(\log _{e} x\right)^{2}}
\end{aligned}
$$

Q18. $z \in C$ satisfies the condition $|z| \geq 3$.
Then the least value of $\left|z+\frac{1}{z}\right|$ is
A $\frac{3}{8}$
$\begin{array}{ll}\text { B } & \frac{8}{5} \\ \text { C } & \frac{8}{3}\end{array}$
D $\frac{5}{8}$

Q18. $z \in C$ satisfies the condition $|z| \geq 3$. Then the least value of $\left|z+\frac{1}{z}\right|$ is

A $\frac{3}{8}$
B $\frac{8}{5}$
D $\frac{5}{8}$

Solution :

From triangle inequality we know that
$\left|z_{1}+z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right|$
Hence
$\left|z+\frac{1}{z}\right|=\left|z-\left(-\frac{1}{z}\right) \geq|z|-\left|-\frac{1}{z}\right|\right|$
$\geq 3-\frac{1}{3}=\frac{8}{3}$
Hence $\frac{8}{3}$ is the correct answer

Q19. If a, b, c, d, e, f, are in arithmetic progression. Then e-c is equal to

A $2(c-a)$
B $2(\mathrm{~d}-\mathrm{c})$

C $2(\mathrm{f}-\mathrm{d})$
D $d-c$

Q19. If a, b, c, d, e, f, are in arithmetic progression. Then e-c is equal to

A $2(c-a)$
B $2(\mathrm{~d}-\mathrm{c})$

C $2(f-d)$
D $d-c$

Solution :

$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}$ are in A.P.
Let common difference $=\mathrm{D}$

$$
\begin{aligned}
& \therefore e-c=(a+4 D)-(a+2 D)=2 D \\
& =2(d-c)
\end{aligned}
$$

Q20. $\int \frac{\ln (x+1)-\ln x}{x(x+1)} d x$ is equal to (where C is an arbitrary constant)

A $-\frac{1}{2}\left[\ln \left(\frac{x+1}{x}\right)\right]^{2}+C$
B $\quad C-\left[\{\ln (x+1)\}^{2}-(\ln x)^{2}\right]$
C $\quad-\ln \left[\ln \left(\frac{x+1}{x}\right)+C\right]$
D $-\ln \left(\frac{x+1}{x}\right)+C$

Q20. $\int \frac{\ln (x+1)-\ln x}{x(x+1)} d x$ is equal to (where C is an arbitrary constant)

A $-\frac{1}{2}\left[\ln \left(\frac{x+1}{x}\right)\right]^{2}+C$
B $\quad C-\left[\{\ln (x+1)\}^{2}-(\ln x)^{2}\right]$
C $\quad-\ln \left[\ln \left(\frac{x+1}{x}\right)+C\right]$
D $-\ln \left(\frac{x+1}{x}\right)+C$

Solution :

$p u t \ln (x+1)-\ln x=t$
$\Rightarrow \frac{1}{x+1}-\frac{1}{x}=\frac{d t}{d x} \Rightarrow \frac{x(x+1)}{x(x+1)}=\frac{d t}{d x}$
$\Rightarrow \frac{-d x}{x(x+1)}=d t \Rightarrow \frac{d x}{x(x+1)}=-d t$
so question becomes
$-\int t d t=-\frac{t^{2}}{2}+C$

Q21. If $f(x)$ is a polynomial satisfying
$f(x) f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right)$ and $f(2)>1$, then $\lim _{x \rightarrow 1} f(x)$ is

Solution :

As given $f(x) \cdot f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right) \cdot f(2)$,
$\Rightarrow f(x) f\left(\frac{1}{x}\right)-f(x)-f\left(\frac{1}{x}\right)=0$
$\Rightarrow(f(x)-1)\left(f\left(\frac{1}{x}\right)-1\right)=1$
$\Rightarrow h(x) h\left(\frac{1}{x}\right)=1$ as it $f(x)$ is a polynomial, hence $h(x)$
will also be a polynomial $\Rightarrow h(x)= \pm x^{n}$
$\Rightarrow f(x)= \pm x^{n}+1$
Hence $f(x)= \pm x^{n}+1$
Now $f(2)>1 \Rightarrow f(x)=x^{n}+1$
hence $\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1}\left(x^{n}+1\right)=2$

Q22. If

$A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4\end{array}\right], I=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $A^{-1}=\frac{1}{6}\left(A^{2}+c A+d\right)$
then the sum of values of c and d is

Solution :

We evaluate A^{2} and A^{3} and write the given equation as

$$
A A^{-1}=I=\frac{1}{6}\left[A^{3}+c A^{2}+d A\right] .
$$

Comparing the corresponding elements on both the sides, we get $c=-6, d=11$.

A LIVE Online Quiz like never before!

Score. Learn. Earn

Prize pool upto Rs 50k
Get Paytm Cashback

Q23. The least value of the quadratic polynomial, $f(x)=\left(2 p^{2}+1\right) x^{2}+2\left(4 p^{2}-1\right) x+$ $4\left(2 p^{2}+1\right)$ for real values of p and x is

Solution :

$$
\begin{aligned}
& y=2 p^{2}\left(x^{2}+4 x+4\right)+x^{2}-2 x+1+3 \\
& y=2 p^{2}(x+2)^{2}+(x-1)^{2}+3 \\
& p=0, x=1 \\
& y_{\min }=3
\end{aligned}
$$

Q24. If A, B, C are in arithmetic progression and $B=\frac{\pi}{4}$, then $\tan A \tan B$ $\tan \mathrm{C}=$

Solution :

\because Angle A, B, C are in arithmetic progession and $\angle B=\frac{\pi}{4}$ then $A=\frac{\pi}{4}-\theta C=\frac{\pi}{4}+\theta$
Hence $\tan \left(\frac{\pi}{4}-\theta\right) \tan \frac{\pi}{4} \tan \left(\frac{\pi}{4}+\theta\right)$
$=\frac{1-\tan \theta}{1+\tan \theta} \cdot 1 \cdot \frac{1+\tan \theta}{1-\tan \theta}=1$

Vedantu Online Revolution
KAUN BOLA GHAR SE NAA HOPAYEGA?

JEE
 Crash Course

Lightning Deal: $₹ 24008 \longrightarrow$ ₹ 4499

Use Coupon Code: ASCC
Buy Now @ https://vdnt.in/JEECCE

How to Avail The Lightning Deal

Click on Enroll
Now

Click on "I have a Coupon Code"

Apply Coupon "ASCC"

ENROLLNOW

Q25. The distance of the point $(-1,1)$ from the line $12(x+6)=5(y-2)$ is

Solution :

The given line is $12(x+6)=5(y-2)$
$\Rightarrow 12 x-5 y+82=0$
The perpendicular distance from $\left(x_{1}, y_{1}\right)$ to
the line $a x+b y+c=0$ is $\frac{\left(a x_{1}+b y_{1}+c\right)}{\sqrt{a^{2}+b^{2}}}$
The point $\left(x_{1}, y_{1}\right)$ is $(-1,1)$, therefore,
perpendicular distance $(-1,1)$ to the line
$12 x-5 y+82=0$ is
$=\frac{|12-5+82|}{\sqrt{12^{2}+(-5)^{2}}}=\frac{65}{\sqrt{144+25}}=\frac{65}{\sqrt{169}}$
$=\frac{65}{13}=5$

Join Vedantu JEE

 Telegram channel NOW!Assignments Notes

Daily Update

https://vdnt.in/JEEVedantu
Link in Bio

Valatit CRACK JEE

LIKESHARE
\#LearningWon'tStop

