

Coulomb's Law and Electric Field MCQ

$7_{\Lambda} abla_{\Lambda} abla$

SURI SIR IIT BOMBAY

ACCORDING TO PHYSICS... The glass is never empty

Vedantu

Vedantu JEE 2021 Program

-FEATURES-

- → 2500+ hours of LIVE online teaching
- → 45+ Teachers; from Top IITs and 10+ years experience
- → 750 Tests & 3000 Assignments for Practical Application
- → Instant Doubt Solving By Academic Mentors
- → Replay/Recording of Classes If You've Missed
- → Rank Booster Quizzes
- → Previous Paper Analysis

Boost your learning with Vedantu Pro <u>vdnt.in/YTJEE21</u> Enroll for FREE

A total charge Q is broken in two parts Q_1 and Q_2 and they are placed at a distance R from each other. The maximum force of repulsion between them occur, when

A
$$Q_2 = \frac{Q}{R}, Q_1 = Q - \frac{Q}{R}$$

B $Q_2 = \frac{Q}{4}, Q_1 = Q - \frac{2Q}{3}$
C $Q_2 = \frac{Q}{4}, Q_1 = \frac{3Q}{4}$
D $Q_1 = \frac{Q}{2}, Q_2 = \frac{Q}{2}$

A total charge Q is broken in two parts Q_1 and Q_2 and they are placed at a distance R from each other. The maximum force of repulsion between them occur, when

Two point charges Q_1 and Q_2 placed at separation d in vacuum and force acting then is F. Now a dielectric slab of thickness d/2 and dielectric constant K = 4 is placed between them. The new force between the charges will be

Two point charges Q_1 and Q_2 placed at separation d in vacuum and force acting then is F. Now a dielectric slab of thickness d/2 and dielectric constant K = 4 is placed between them. The new force between the charges will be

Three charges +Q, q, +Q are placed respectively, at distance, 0, d/2 and d from the origin, on the x-axis. If the net force experienced by +Q, placed at x = 0, is zero, then value of q is

A -Q/4 **B** +Q/2 **C** +Q/4 **D** -Q/4

Three identical charges are placed at the vertices of an equilateral triangle. The force experienced by each charge (if $k = 1/4\pi\epsilon_0$) is

A
$$2k \frac{q^2}{r^2}$$
 B $\frac{kq^2}{2r^2}$ **C** $\sqrt{3}k \frac{q^2}{r^2}$ **D** $\frac{kq^2}{\sqrt{2}r^2}$

Four charges equal -Q are placed at the four corners of a square and a charge q is at its centre. If the system is in equilibrium the value of q is

$$A - \frac{Q}{2} \left(1 + 2\sqrt{2} \right) \qquad B \quad \frac{Q}{4} \left(1 + 2\sqrt{2} \right) \qquad C \quad -\frac{Q}{4} \left(1 + 2\sqrt{2} \right) \qquad D \quad \frac{Q}{2} \left(1 + 2\sqrt{2} \right)$$

3 point charges are placed on circumference of a circle of radius 'd' as shown in figure. The electric field along x-axis at centre of circle is :

 $q\sqrt{3}$

 $q\sqrt{3}$

 $2\pi \varepsilon_0 d$

Five point charges (+q each) are placed at the five vertices of a regular hexagon of side 2a. What is the magnitude of the net electric field at the centre of the hexagon?

A
$$\frac{1}{4\pi\varepsilon_0}\frac{q^2}{a^2}$$
 B $\frac{q}{16\pi\varepsilon_0a^2}$ C $\frac{\sqrt{2}q}{4\pi\varepsilon_0a^2}$ D $\frac{5q}{16\pi\varepsilon_0a^2}$

A point mass m and charge q is connected with massless spring of natural length L. Initially spring is in its natural length. If a horizontal uniform electric field E is switched on as shown in fig, then the maximum separation between the point mass and the wall is : (Assume all surface are frictionless)

A
$$L + \frac{2qE}{K}$$

B $L + \frac{qE}{K}$
Wall $M = \frac{m}{K}$

C L

D None of these

Three charges $+Q_1$, $+Q_2$ and q are placed on a straight line such that q is somewhere in between $+Q_1$ and $+Q_2$. If this system of charges is in equilibrium, what should be the magnitude and sign of charge q?

A
$$\frac{Q_1Q_2}{\left(\sqrt{Q_1}+\sqrt{Q_2}\right)}$$
, positive
B $\frac{Q_1+Q_2}{2}$, positive
C $\frac{Q_1Q_2}{\left(\sqrt{Q_1}+\sqrt{Q_2}\right)^2}$, negative
D $\frac{Q_1+Q_2}{2}$, negative

Join Vedantu JEE Telegram channel NOW!

Assignments

Notes

Daily Update

https://vdnt.in/JEEVedantu

