$$
\Delta^{\vee} \Delta^{\vee}
$$

Coulomb's Law and Electric Field

 MCQস

SURI SIR IIT BOMBAY

ACCORDING TO PHYSICS... THE GLASS IS NEVER EMPTY

(0) njoy_suri

Vedantu JEE 2021 Program

-F E A T URES-

$\rightarrow \mathbf{2 5 0 0}+$ hours of LIVE online teaching
$\rightarrow 45+$ Teachers; from Top IITs and 10+ years experience
$\rightarrow 750$ Tests \& 3000 Assignments for Practical Application
\rightarrow Instant Doubt Solving By Academic Mentors
\rightarrow Replay/Recording of Classes If You've Missed
\rightarrow Rank Booster Quizzes

Boost your learning with Vedantu Pro vdnt.in/YTJEE21

Enroll for FREE

Vedanta
Learn LIVE Online
\rightarrow Previous Paper Analysis
$\longrightarrow 1 \rightarrow$

$\Delta^{\vee} \Delta^{\nabla} \Delta^{\prime}$ $\Delta \nabla_{\Delta} \nabla_{\Delta}$

Vedanta JEE

SUBSGRIBE

A total charge Q is broken in two parts Q_{1} and Q_{2} and they are placed at a distance R from each other. The maximum force of repulsion between them occur, when

A $\quad Q_{2}=\frac{Q}{R}, Q_{1}=Q-\frac{Q}{R}$
B $\quad Q_{2}=\frac{Q}{4}, Q_{1}=Q-\frac{2 Q}{3}$
C $\quad Q_{2}=\frac{Q}{4}, Q_{1}=\frac{3 Q}{4}$
D $\quad Q_{1}=\frac{Q}{2}, Q_{2}=\frac{Q}{2}$

A total charge Q is broken in two parts Q_{1} and Q_{2} and they are placed at a distance R from each other. The maximum force of repulsion between them occur, when

Two point charges Q_{1} and Q_{2} placed at separation d in vacuum and force acting then is F . Now a dielectric slab of thickness $\mathrm{d} / 2$ and dielectric constant $K=4$ is placed between them. The new force between the charges will be
A $\frac{4 F}{9}$
B $\frac{2 F}{9}$
C $\frac{F}{9}$
D $\frac{5 F}{9}$

Two point charges Q_{1} and Q_{2} placed at separation d in vacuum and force acting then is F . Now a dielectric slab of thickness $\mathrm{d} / 2$ and dielectric constant $K=4$ is placed between them. The new force between the charges will be
Three charges +Q, q, +Q are placed respectively, at distance, $0, \mathrm{~d} / 2$ and d from the origin, on the x-axis. If the net force experienced by $+Q$, placed at $x=0$, is zero, then value of q is
A $-\mathrm{Q} / 4$
B $+\mathrm{Q} / 2$
C $+\mathrm{Q} / 4$
D $-Q / 2$

Three identical charges are placed at the vertices of an equilateral triangle. The force experienced by each charge (if $k=1 / 4 \pi \varepsilon_{0}$) is
A $2 k \frac{q^{2}}{r^{2}}$
B $\frac{k q^{2}}{2 r^{2}}$
C $\sqrt{3} k \frac{q^{2}}{r^{2}}$
D $\frac{k q^{2}}{\sqrt{2} r^{2}}$

Four charges equal - Q are placed at the four corners of a square and a charge q is at its centre. If the system is in equilibrium the value of q is
A $-\frac{Q}{2}(1+2 \sqrt{2})$
B $\frac{Q}{4}(1+2 \sqrt{2})$
C $-\frac{Q}{4}(1+2 \sqrt{2})$
D $\frac{Q}{2}(1+2 \sqrt{2})$

3 point charges are placed on circumference of a circle of radius ' d ' as shown in figure. The electric field along x-axis at centre of circle is :
A $\frac{q}{4 \pi \varepsilon_{0} d^{2}}$
B $\frac{q \sqrt{3}}{4 \pi \varepsilon_{0} d^{2}}$
C $\frac{q \sqrt{3}}{\pi \varepsilon_{0} d^{2}}$
D $\frac{q \sqrt{3}}{2 \pi \varepsilon_{0} d^{2}}$

Five point charges (+q each) are placed at the five vertices of a regular hexagon of side 2 a . What is the magnitude of the net electric field at the centre of the hexagon?
A $\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{a^{2}}$
B $\frac{q}{16 \pi \varepsilon_{0} a^{2}}$
C $\frac{\sqrt{2} q}{4 \pi \varepsilon_{0} a^{2}}$
D $\frac{5 q}{16 \pi \varepsilon_{0} a^{2}}$

A point mass m and charge q is connected with massless spring of natural length L. Initially spring is in its natural length. If a horizontal uniform electric field E is switched on as shown in fig, then the maximum separation between the point mass and the wall is : (Assume all surface are frictionless)

A $L+\frac{2 q E}{K}$

B $L+\frac{q E}{K}$

C L

D None of these

Three charges $+\mathrm{Q}_{1},+\mathrm{Q}_{2}$ and q are placed on a straight line such that q is somewhere in between $+\mathrm{Q}_{1}$ and $+\mathrm{Q}_{2}$. If this system of charges is in equilibrium, what should be the magnitude and sign of charge q ?

A $\frac{Q_{1} Q_{2}}{\left(\sqrt{Q_{1}}+\sqrt{Q_{2}}\right)}$, positive
B $\frac{Q_{1}+Q_{2}}{2}$, positive
C $\frac{Q_{1} Q_{2}}{\left(\sqrt{Q_{1}}+\sqrt{Q_{2}}\right)^{2}}$, negative
D $\frac{Q_{1}+Q_{2}}{2}$, negative

Join Vedantu JEE

 Telegram channel NOW!Assignments Notes

Daily Update

https://vdnt.in/JEEVedantu
Link in Bio

$\Delta^{v} \Delta^{\vee} \Delta^{\prime}$

CRACK JEE
 Vedantu
 JEE

\#LearningWon'tStop

$\nabla_{\wedge} \nabla_{\wedge} \nabla_{\boldsymbol{A}}$

