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Increasing Complexity of the Scientific Enterprise

Evolution of the scientific enterprise from [Barabasi, 2005] extended with the 
ATLAS Detector Project at the Large Hadron Collider [The ATLAS Collaboration, 2012].

Single authorship Co-authorship Large number of
co-authors

Community 
as author



Human Limitations Curb Scientific Progress [Gil DSJ’17]

• Not systematic
• e.g., [Peters et al PLOS 2014]

• Errors
• e.g., [Herndon et al CJE 2013]

• Biases
• e.g., [Rassbach et al IAAI 2010]

• Poor reporting
• e.g., [Garijo et al PLOS 2013]



Science Ontologies and Linked Data on the Web

http://bio2rdf.wiki.sourceforge.net

https://www.openphacts.org



Web Publication of Science Products

http://www.nanopub.org/ http://www.researchobject.org/
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Low-Cost Creation of Scientific Vocabulary Standards
[Gil et al ISWC 2017; Khider et al PP 2019; Emile-Geay et al PAGES 2018]

Problem: Diversity of requirements for metadata
Approach: Semantic technologies used for 
controlled crowdsourcing facilitate creation of 
community standards to describe highly 
heterogeneous scientific data
• Organic growth: As scientists annotate their 

datasets, they propose new metadata properties
• Crowdsourcing: Scientists proposed properties 

for reuse, vote on priorities
• Editorial oversight: Editors decide what 

properties will be in future versions
Results: A new standard for paleoclimate (PaCTS
1.0) with one (!!) single initial face-to-face meeting

https://commons.wikimedia.org/wiki/File:An_ice_core_segment.jpg

https://commons.wikimedia.org/wiki/File:Gravity-corer_hg.png



Controlled Crowdsourcing to Support
Continuous Ontology Growth 7 

 
Figure 2: Overview of the metadata annotation interface, with core ontology terms marked 
with an “L”. The properties under “Extra Information” are part of the crowd vocabulary. 

4.1 Annotation Framework: The Linked Earth Platform 

The Linked Earth Platform [21] implements the Annotation Framework as an exten-
sion of the Organic Data Science framework [9], which is built on MediaWiki [15] 
and Semantic MediaWiki [13]. There are several reasons for this. First, a wiki pro-
vides a collaborative environment where multiple users can edit pages, and where the 
history of edits is automatically tracked. Second, MediaWiki is easily extensible, 
allowing us to easily create special types of pages, generate dynamic user input forms, 
and create many other extensions. Third, because MediaWiki is well maintained and 
has a strong community, there are numerous plug-ins available. Finally, the Semantic 
MediaWiki  API makes it easy to export content and interoperate with other systems.  

Each dataset is a page in the Linked Earth Platform. “Dataset” is a special class, or 
category in wiki parlance. When a user creates a new page for a dataset, all the prop-
erties that apply are shown in a table where the user can fill their values. For each 
variable they indicate if it is observed or inferred, its value, uncertainty, and how it 
was measured. The order of the variables as columns in the data file is also specified. 

Figure 2 shows the metadata annotation interface for a lake sediment dataset. The 
user has provided some of the values of the metadata properties, others have not been 
filled out yet. The core ontology properties are shown at the top, and the crowd vo-
cabulary properties are shown near the bottom (under “Extra Information”). The user 
can also specify a new subcategory for this dataset, as shown at the bottom. 
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Figure 3: Overview of the main features of the Linked Earth Platform. 

 
When annotating metadata, the system offers in a pull-down menu the possible 

completions of what the user is typing based on similar terms proposed by other users. 
This helps avoid proliferation of unnecessary terms and helps normalize the new 
terms created. If none represents what the user wants to specify, then a new property 
will be added. The property becomes part of the crowd vocabulary, and a new wiki 
page is created for it. The user, or perhaps others, can edit that page to add documen-
tation. As a result, users build the crowd vocabulary while curating their own datasets. 

Figure 3 highlights the main features of the Linked Earth Platform. The map-based 
visualizations show datasets already annotated with location metadata. Author pages 
show their contributions, which help track credit and create incentives.  Other pages 
are devoted to foster community discussions and take polls. The annotation interface 
is designed to be intuitive, and provides detailed documentation with examples1.   

4.2 Initial Core Ontology 

To ensure that most changes would be crowd extensions that would not cause major 
redesigns of the core ontology, the initial core ontology was carefully designed. 

First, the ontology was developed using a traditional methodology for ontology en-
gineering [23]. We started by collecting terms to be included by the ontology in col-
laboration with a select group of domain scientists. These terms where extracted from 
examples provided by the community2, and from previous workshops where the 
community had discussed dataset annotation [4]. The ontology development process 
was also informed by previous efforts to represent basic paleoclimate metadata [14], 
and by prior community proposals to unify terminology in the paleo-climate domain 
[5].  

                                                             
1 http://wiki.linked.earth/Best_Practices 
2 https://github.com/LinkedEarth/Ontology/tree/master/Example 
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2 https://github.com/LinkedEarth/Ontology/tree/master/Example 



9 

 
Figure 4: An overview of the core Linked Earth Ontology and its extensions. 

We also took into account relevant standards and widely used models. We used 
several vocabularies3: Schema.org and Dublin Core Terms (DC) for representing the 
basic metadata of a dataset and its associated publications (e.g., title, description, 
authors, contributors, license, etc.), the wgs_84 and GeoSparql specifications for rep-
resenting locations where samples are collected, the Semantic Sensor Network (SSN) 
to represent observation-related metadata, the FOAF vocabulary to represent basic 
information about contributors, and PROV-O to represent the derivation of models 
from raw datasets. 

Figure 4 shows an overview of the ontology, which is layered and has a modular 
structure. The existing standards just mentioned provide an upper ontology for basic 
terms. We used the LiPD format, mentioned in Section 2, to develop the LiPD ontol-
ogy4 which contains the main terms useful to describe any paleoclimate dataset (e.g., 
data tables, variables, instrument used to measure them, calibration, uncertainty, etc.). 
A set of extensions of LiPD cover more specific aspects of the domain. The Proxy 
Archive extension defines the types of medium in which measurements are taken, 
such as marine sediments or coral. The Proxy Observation extension describes the 
types of observations (e.g., tree ring width, trace metal ratio, etc.) that can be meas-
ured. The Proxy Sensor extension describes the types of biological or non-biological 
components that react to environmental conditions and reflect the climate at the time. 
The Instrument extension enumerates the instruments used for taking measurements, 
such as a mass spectrometer. The Inferred Variable extension describes the types of 
climate variables that can be inferred from measurements or from other inferred vari-
ables (e.g. temperature). The crowd vocabulary builds on these extensions. 

The core ontology and the crowd vocabulary share a common namespace for all 
the extensions (http://linked.earth/ontology/), in order to simplify querying as well as 

                                                             
3 http://schema.org/, http://dublincore.org/documents/dcmi-terms/, https://www.w3.org/2003/01/geo/wgs84_pos, 

http://schemas.opengis.net/geosparql/1.0/geosparql_vocab_all.rdf, https://www.w3.org/2005/Incubator/ssn/ssnx/ssn#, 
https://www.w3.org/2005/Incubator/ssn/ssnx/ssn#, http://xmlns.com/foaf/spec/, http://www.w3.org/TR/prov-o/ 

4 http://wiki.linked.earth/Linked_Paleo_Data 
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Representing Scientific Software Metadata
[Gil et al eScience’16; Carvalho et al eScience’18]

Collaboration with Daniel Garijo and Varun Ratnakar (USC/ISI); 
Lucas Carvalho and Claudia Medeiros (Unicamp)
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The W3C PROV Provenance Standard
[Gil and Miles 2013; Groth and Moreau 2013; Moreau et al 2014]

https://www.w3.org/2011/prov/



Publishing Provenance as Linked Data on the Web
[Garijo et al FCGS’17]

Work with Daniel Garijo and Oscar Corcho (UPM)
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Execution Provenance vs Reusable Workflow
[Gil et al IEEE-IS’11; Gil et al JETAI’11]

WT WI WE



Workflows as Web Objects: PROV, P-PLAN, OPMW
[Garijo et al FGCS’17]

Workflow template

Plan Definition

Workflow execution

OPM, PROV

P-Plan

OPMW

Generic Provenance

Plan Execution

Execution of

Work with D. Garijo and O. Corcho (UPM)



WEST (Workflow Ecosystems through STandards)
[Gil et al WORKS’14]

• 9 workflow 
functionalities
• 6 different 

research groups
• 2-5 consumer 

systems per 
exchange
• 4 workflow 

representations 
provide 
different 
granularity for 
consumer 
systems

WEST

]



Functional Heterogeneity in WEST

USC/ISI ISD

UCLA/USC

USC/ISI CST

NASA/JPL & Apache

UPM

VUA

WExp

USC/ISI ISD

UPM

USC/ISI ISD

Generation

Mining

Repository Execution

Execution

Execution Visualization

Browsing

Documentation
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Automated Discovery in DISK
[Gil et al AAAI’17; Gil et al ACS’16]

data

Protein PRKCDBP is expressed 
in samples of patient P36

hypothesis

revision
PRKCDBP mutation 
is expressed in P36

workflows meta-
workflows

Wf#0# Wf#1# Wf#2#

simMetrics#

comparison*

hypothesis#

revisedHyp#

hypothesisRevision*

lines of inquiry

With Parag Malick, Ravali Adusumilli, Hunter Boyce (Stanford); Arunima Srivastava (OSU); 
Daniel Garijo, Varun Ratnakar, Rajiv Mayani (USC/ISI); Thomas Yu (Sage Bionetworks)
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DISK Hypothesis Ontology:

http://disk-project.org/ontology/disk

Representing Hypotheses



The DISK Hypothesis Ontology
[Garijo et al SciKnow’17]
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MINT: Model INTegration
[Gil et al IEMS 2018; Garijo et al eScience 2019]

Collaboration with Daniel Garijo, Deborah Khider, Craig Knoblock, Ewa Deelman, Rafael Ferreira (USC/ISI), Vipin 
Kumar (UM), Scott  Peckham (CU), Chris Duffy & Armen Kemanian (PSU), Kelly Cobourn (VT), Suzanne Pierce (UT)
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gridding

Data 
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From Modeling to Decisions

•Generate report for decision maker
• Run model under different assumptions to characterize uncertainty

• Inspect details of quantitative analyses to understand patterns of behavior, 
causal relations, impact of interventions, etc.

Gather 
Data

Define 
Regions

Prepare 
Models

Use 
models

Explore 
results

Drill down on 
analytic products

• Create configurations of models for different modeling situations
• Create model set ups to customize model to specific areas or limited scope
• Run models to determine sensitivity to parameters and inputs

•Define useful regions for different modeling domains

•Locate, catalogue, and curate potentially relevant data
•Generate new data when possible (eg from remote sensing data, improve 

data quality, automated data transformations for interoperability, etc.) 
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• Find appropriate models to address modeling problems
• Run model under different drivers and adjustable parameters to expose 

patterns of system behavior

Identify
Objectives

•Decompose problems based on responses of interest and modeling regions 
• Coordinate model and data choices for integrated modeling
• Identify ranges of drivers, adjustable parameters, and interventions

Transform
data

• Find appropriate data for the region given the modeling problems
• Transform the data needed by the models
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aly
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Reproducible Research: 
Geophysics Papers of the Future

www.scientificpaperofthefuture.org
[Gil et al ESS 2016; Essawy et al EMS 2017; Goodman et al PLOS CB 2014]

Digital'Scholarship'

Provenance'and'methods:''
Work%low/scripts.specifying.

data%low,.codes,..
con%iguration.%iles,..

parameter.settings,.and..
runtime.dependencies.

Data:'
Include.data.as..
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Open'Science'

Open'licenses:'
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Sharing:'
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Modern'Paper'

Geoscience'Paper'of'the'Future'Scientific Paper of the Future  

Neuroimaging, particularly using functional MRI 
(fMRI), has become the primary tool of human neuro-
science1, and recent advances in the acquisition and 
analysis of fMRI data have provided increasingly pow-
erful means to dissect brain function. The most common 
form of fMRI (known as blood-oxygen-level-dependent  
(BOLD) fMRI) measures brain activity indirectly 
through localized changes in blood oxygenation that 
occur in relation to synaptic signalling2. These changes 
in signal provide the ability to map activation in rela-
tion to specific mental processes, to identify functionally 
connected networks from resting fMRI3, to characterize 
neural representational spaces4 and to decode or predict 
mental function from brain activity5,6. These advances 
promise to offer important insights into the workings 
of the human brain but also generate the potential for 
a ‘perfect storm’ of irreproducible results. In particular, 
the high dimensionality of fMRI data, the relatively low 
power of most fMRI studies and the great amount of 
flexibility in data analysis contribute to a potentially high 
degree of false-positive findings.

Recent years have seen intense interest in the repro-
ducibility of scientific results and the degree to which 
some problematic, but common, research practices may 
be responsible for high rates of false findings in the sci-
entific literature, particularly within psychology but also 
more generally7–9. There is growing interest in ‘meta- 
research’ (REF. 10) and a corresponding growth in studies 
investigating factors that contribute to poor reproduci-
bility. These factors include study design characteristics 

that may introduce bias, low statistical power and flexi-
bility in data collection, analysis and reporting — termed 
‘researcher degrees of freedom’ by Simmons et al.8. There 
is clearly concern that these issues may be undermin-
ing the value of science — in the United Kingdom, the 
Academy of Medical Sciences recently convened a joint 
meeting with several other funders to explore these 
issues, and the US National Institutes of Health has an 
ongoing initiative to improve research reproducibility11.

In this Analysis article, we outline a number of poten-
tially problematic research practices in neuroimaging that 
can lead to increased risk of false or exaggerated results. 
For each problematic research practice, we propose a set 
of solutions. Although most of the proposed solutions 
are uncontroversial in principle, their implementation is 
often challenging for the research community, and best 
practices are not necessarily followed. Many of these solu-
tions arise from the experience of other fields with sim-
ilar problems (particularly those dealing with similarly 
large and complex data sets, such as genetics) (BOX 1). We 
note that, although our discussion here focuses on fMRI, 
many of the same issues are relevant for other types of 
neuroimaging, such as structural or diffusion MRI.

Low statistical power
The analyses of Button et al.12 provided a wake-up call 
regarding statistical power in neuroscience, particu-
larly by highlighting the point (that was raised earlier by 
Ioannidis7) that low power not only reduces the likeli-
hood of finding a true result if it exists but also raises 

Correspondence to R.A.P. 
russpold@stanford.edu

doi:10.1038/nrn.2016.167
Published online 5 Jan 2017

Scanning the horizon: towards 
transparent and reproducible 
neuroimaging research
Russell A. Poldrack1, Chris I. Baker2, Joke Durnez1,3, Krzysztof J. Gorgolewski1, 
Paul M. Matthews4, Marcus R. Munafò5,6, Thomas E. Nichols7, Jean-Baptiste Poline8, 
Edward Vul9 and Tal Yarkoni10

Abstract | Functional neuroimaging techniques have transformed our ability to probe the 
neurobiological basis of behaviour and are increasingly being applied by the wider neuroscience 
community. However, concerns have recently been raised that the conclusions that are drawn 
from some human neuroimaging studies are either spurious or not generalizable. Problems such 
as low statistical power, flexibility in data analysis, software errors and a lack of direct replication 
apply to many fields, but perhaps particularly to functional MRI. Here, we discuss these problems, 
outline current and suggested best practices, and describe how we think the field should evolve 
to produce the most meaningful and reliable answers to neuroscientific questions.
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Interpolation
The operation by which  
a function is applied to the 
sampled data to obtain 
estimates of the data at 
positions where data have not 
been sampled.

Validation methodologies (such as comparing with 
another existing implementation or using simulated 
data) should be clearly defined. Custom analysis code 
should always be shared on manuscript submission 
(for an example, see REF. 58). It may be unrealistic to 
expect reviewers to evaluate code in addition to the 
manuscript itself, although this is standard in some 
journals such as the Journal of Statistical Software. 
However, reviewers should request that the code be 
made available publicly (so others can evaluate it) and, 
in the case of methodological papers, that the code is 
accompanied with a set of automated software tests. 
Finally, researchers need to acquire sufficient training 
on the implemented analysis methods, particularly so 
that they understand the default parameter values of 
the software (such as cluster-forming thresholds and 
filtering cut-offs), as well as the assumptions on the 
data and how to verify those assumptions.

Insufficient study reporting
For the reader of a paper to know whether appro-
priate analyses have been performed, the methods 
must be reported in sufficient detail. Some time ago, 

we published an initial set of guidelines for report-
ing the methods typically used in an fMRI study59. 
Unfortunately, reporting standards in the fMRI litera-
ture remain poor. Carp60 and Guo et al.61 analysed 241 
and 100 fMRI papers, respectively, for the reporting 
of methodological details, and both found that some 
important analysis details (such as interpolation meth-
ods and smoothness estimates) were rarely described. 
Consistent with this, in 22 of the 66 papers that we 
discussed above, it was impossible to identify exactly 
which multiple-comparison correction technique was 
used (beyond generic terms such as ‘cluster-based cor-
rection’), because no specific method or citation was 
provided. The Organization for Human Brain Mapping 
(OHBM) has recently addressed this issue through 
its 2015–2016 Committee on Best Practices in Data 
Analysis and Sharing (COBIDAS), which has issued a 
new, detailed set of reporting guidelines62 (BOX 4).

In addition, claims in the neuroimaging literature are 
often asserted without corresponding statistical support. 
In particular, failures to observe a statistically significant 
effect can lead researchers to proclaim the absence of an 
effect — a dangerous and almost invariably unsupported 

Box 4 | Guidelines for transparent methods reporting in neuroimaging
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Practices in Data Analysis and Sharing (COBIDAS) report provides a set of 
DGUV�RTCEVKEGU�HQT�TGRQTVKPI�CPF�EQPFWEVKPI�UVWFKGU�WUKPI�/4+��+V�FKXKFGU�
RTCEVKEG�KPVQ�UGXGP�ECVGIQTKGU�CPF�RTQXKFGU�FGVCKNGF�EJGEMNKUVU�VJCV�ECP�
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• )GPGTCN��KPVGPUKV[�EQTTGEVKQP��KPVGPUKV[�PQTOCNK\CVKQP��FKUVQTVKQP�
EQTTGEVKQP��DTCKP�GZVTCEVKQP��UGIOGPVCVKQP��URCVKCN�UOQQVJKPI��CTVGHCEV�
CPF�UVTWEVWTGF�PQKUG�TGOQXCN��SWCNKV[�EQPVTQN�TGRQTVU��KPVGTUWDLGEV�
registration

• Temporal or dynamic: motion correction

• (WPEVKQPCN�/4+��6��UVCDKNK\CVKQP��UNKEG�VKOG�EQTTGEVKQP��HWPEVKQPs
UVTWEVWTG�
KPVTC�UWDLGEV��EQ�TGIKUVTCVKQP��XQNWOG�EGPUQTKPI��
TGUVKPI�UVCVG�HWPEVKQPCN�/4+�HGCVWTG

• &KHHWUKQP��ITCFKGPV�FKUVQTVKQP�EQTTGEVKQP��FKHHWUKQP�/4+�GFF[�EWTTGPV�
EQTTGEVKQP��FKHHWUKQP�GUVKOCVKQP��FKHHWUKQP�RTQEGUUKPI��FKHHWUKQP�
tractography

• 2GTHWUKQP��#5.��F[PCOKE�UWUEGRVKDKNKV[�EQPVTCUV�/4+

Statistical modelling and inference
• /CUU�WPKXCTKCVG�CPCN[UGU��XCTKCDNG�UWDOKVVGF�VQ�UVCVKUVKECN�OQFGNNKPI��
URCVKCN�TGIKQP�OQFGNNGF��KPFGRGPFGPV�XCTKCDNGU��OQFGN�V[RG��OQFGN�
UGVVKPIU��KPHGTGPEG�
EQPVTCUV��UGCTEJ�TGIKQP��UVCVKUVKE�V[RG��P�XCNWG�
EQORWVCVKQP��OWNVKRNG�VGUVKPI�EQTTGEVKQP�

• (WPEVKQPCN�EQPPGEVKXKV[��EQPHQWPF�CFLWUVOGPV�CPF�HKNVGTKPI��
OWNVKXCTKCVG�OGVJQF�
HQT�GZCORNG��KPFGRGPFGPV�EQORQPGPV�CPCN[UKU���
FGRGPFGPV�XCTKCDNG�FGHKPKVKQP��HWPEVKQPCN�EQPPGEVKXKV[�OGCUWTG��
GHHGEVKXKV[�EQPPGEVKXKV[�OQFGN��ITCRJ�CPCN[UKU�CNIQTKVJO

• /WNVKXCTKCVG�OQFGNNKPI�CPF�RTGFKEVKXG�CPCN[UKU��KPFGRGPFGPV�XCTKCDNGU��
HGCVWTGU�GZVTCEVKQP�CPF�FKOGPUKQP�TGFWEVKQP��OQFGN��NGCTPKPI�OGVJQF��
VTCKPKPI�RTQEGFWTG��GXCNWCVKQP�OGVTKEU�
FKUETGVG�TGURQPUG��EQPVKPWQWU�
TGURQPUG��TGRTGUGPVCVKQPCN�UKOKNCTKV[�CPCN[UKU��UKIPKHKECPEG���HKV�
interpretation

Results reporting
• /CUU�WPKXCTKCVG�CPCN[UKU��GHHGEVU�VGUVGF��GZVTCEVGF�FCVC��VCDNGU�QH�
EQQTFKPCVGU��VJTGUJQNFGF�OCRU��WPVJTGUJQNFGF�OCRU��GZVTCEVGF�FCVC��
spatial features

• (WPEVKQPCN�EQPPGEVKXKV[��KPFGRGPFGPV�EQORQPGPV�CPCN[UGU��ITCRJ�
analyses (null hypothesis tested)

• /WNVKXCTKCVG�OQFGNNKPI�CPF�RTGFKEVKXG�CPCN[UKU��QRVKOK\GF�GXCNWCVKQP�
metrics

Data sharing
• &GHKPG�FCVC�UJCTKPI�RNCP�GCTN[��OCVGTKCN�UJCTGF��74.�
CEEGUU�KPHQTOCVKQP���
GVJKEU�EQORNKCPEG��FQEWOGPVCVKQP��FCVC�HQTOCV

• &CVCDCUG�HQT�QTICPK\GF�FCVC��SWCNKV[�EQPVTQN�RTQEGFWTGU��QPVQNQIKGU��
XKUWCNK\CVKQP��FG�KFGPVKHKECVKQP��RTQXGPCPEG�CPF�JKUVQT[��
KPVGTQRGTCDKNKV[��SWGT[KPI��XGTUKQPKPI��UWUVCKPCDKNKV[�RNCP�
HWPFKPI�

Reproducibility
• &QEWOGPVCVKQP��VQQNU�WUGF��KPHTCUVTWEVWTG��YQTMHNQY��RTQXGPCPEG�VTCEG��
NKVGTCVG�RTQITCOOKPI��'PINKUJ�NCPIWCIG�XGTUKQP�

• #TEJKXKPI��VQQNU�CXCKNCDKNKV[��XKTVWCN�CRRNKCPEGU

• %KVCVKQP��FCVC��YQTMHNQY
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Software container
A self-contained software tool 
that encompasses all of the 
necessary software and 
dependencies to run  
a particular program.

acceptance of the null hypothesis. ‘Reverse inference’ 
claims, in which the presence of a given pattern of brain 
activity is taken to imply a specific cognitive process 
(for example, “the anterior insula was activated, sug-
gesting that subjects experienced empathy”), are rarely 
grounded in quantitative evidence63. Furthermore, 
claims of ‘selective’ activation in one brain region or 
experimental condition are often made when activa-
tion is statistically significant in one region or condi-
tion but not in others. This false assertion ignores the 
fact that “the difference between ‘significant’ and ‘not 
significant’ is not itself statistically significant” (REF. 64); 
such claims require appropriate tests for statistical 
interactions65.

Solutions. Authors should follow accepted standards 
for reporting methods (such as the COBIDAS stand-
ard for MRI studies), and journals should require 
adherence to these standards. Every major claim in 
a paper should be directly supported by appropriate 
statistical evidence, including specific tests for signif-
icance across conditions and relevant tests for interac-
tions. Because the computer code is often necessary to 
understand exactly how a data set has been analysed, 
releasing the analysis code is particularly useful and 
should be standard practice.

Lack of independent replications
There are surprisingly few examples of direct replica-
tion in the field of neuroimaging, probably reflecting 
both the expense of fMRI studies and the emphasis of 
most top journals on novelty rather than informative-
ness. Although there are many basic results that are 
clearly replicable (for example, the presence of activity 
in the ventral temporal cortex that is selective for faces 
over scenes, or systematic correlations within func-
tional networks in the resting state), the replicability 
of weaker and less neurobiologically established effects 
(for example, group differences and between-subject 
correlations) is nowhere near as certain. One study66 
attempted to replicate 17 studies that had previously 
found associations between brain structure and behav-
iour. Only 1 of the 17 attempts showed stronger evi-
dence for an effect as large as the original effect size 
than for a null effect, and 8 out of 17 showed stronger 
evidence for a null effect. This suggests that replica-
bility of neuroimaging findings (particularly brain–
behaviour correlations) is exceedingly low, as has been 
demonstrated in other fields, such as cancer biology67 
and psychology68.

It is worth noting that, although the cost of con-
ducting a new fMRI experiment is a factor limiting the 
feasibility of replication studies, there are many find-
ings that can be replicated using publicly available data. 
Resources such as the FCP-INDI26, the Consortium 
for Reliability and Reproducibility69, OpenfMRI70 
or the HCP20 provide MRI data that are suitable for 
attempts to replicate many previously reported find-
ings. These resources can also be used to answer ques-
tions about sensitivity of a particular finding to the data 
analysis tools used36. However, even in the cases when 

replications are possible using publicly available data, 
they are still few and far between, because the academic 
community tends to put greater emphasis on novelty of 
findings rather than on their replicability.

Solutions. The neuroimaging community should 
acknowledge replication reports as scientifically impor-
tant research outcomes that are essential in advanc-
ing knowledge. One effort to acknowledge this is the 
OHBM Replication Award, which is to be awarded for 
the first time in 2017 for the best neuroimaging replica-
tion study in the previous year. In addition, in cases of 
especially surprising findings, findings that could have 
influence on public health policy or medical treatment 
decisions, or findings that could be tested using data 
from another existing data set, reviewers should con-
sider requesting replication of the finding by the group 
before accepting the manuscript.

Towards the neuroimaging paper of the future
In this Analysis article, we have outlined a number of 
problems with current practice and made suggestions 
for improvements. Here, we outline what we would like 
to see in the neuroimaging paper of the future, inspired 
by related work in the geosciences71.

Planning. The sample size for the study would be deter-
mined in advance using formal statistical power analysis. 
The entire analysis plan, including exclusion and inclu-
sion criteria, software workflows (including contrasts and 
multiple-comparison methods) and specific definitions 
for all planned regions of interest, would be formally 
pre-registered.

Implementation. All code for data collection and analysis  
would be stored in a version-control system and would 
include software tests to detect common problems. The 
repository would use a continuous integration system 
to ensure that each revision of the code passes appro-
priate software tests. The entire analysis workflow 
(including both successful and failed analyses) would 
be completely automated in a workflow engine and 
packaged in a software container or virtual machine to 
ensure computational reproducibility. All data sets and 
results would be assigned version numbers to enable 
explicit tracking of provenance. Automated quality 
control would assess the analysis at each stage to detect 
potential errors.

Validation. For empirical papers, all exploratory results 
would be validated against an independent validation 
data set that was not examined before validation. For 
methodological papers, the approach would follow best 
practices for reducing overly optimistic results72. Any new 
method would be validated against benchmark data sets 
and compared with other state-of-the-art methods.

Dissemination. All results would be clearly marked as 
either hypothesis-driven (with a link to the appropriate 
pre-registration) or exploratory. All analyses performed 
on the data set (including those analyses that were not 
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Special Section: Geoscience Papers of the Future

On Reproducible AI: 
Towards Reproducible 

Research, Open Science, and 
Digital Scholarship in AI 

Publications 

  Odd Erik Gundersen, Yolanda Gil, David W. Aha 
 

n Artificial intelligence, like any science, must rely on reproducible experiments to validate results. Our 
objective is to give practical and pragmatic recommendations for how to document AI research so that 
results are reproducible. Our analysis of the literature shows that AI publications currently fall short of 
providing enough documentation to facilitate reproducibility. Our suggested best practices are based on 
a framework for reproducibility and recommendations for best practices given by scientific 
organizations, scholars, and publishers. We have made a reproducibility checklist based on our 
investigation and described how every item in the checklist can be documented by authors and 
examined by reviewers. We encourage authors and reviewers to use the suggested best practices and 
author checklist when considering submissions for AAAI publications and conferences.  

 
Reproducibility is a cornerstone of the scientific method. The ability and effort required from 
other researchers to replicate experiments and explore variations depends heavily on the 
information provided when the original work was published. Reproducibility is challenging 
for many sciences, for example when the variability of physical samples and reagents can 
significantly affect the outcome (Begley and Ellis 2012; Lithgow, Driscoll, and Phillips 2017). 
In computer science, a large portion of the experiments are fully conducted on computers, 
making the experiments more straightforward to document (Braun and Ong 2014). Most AI 
and machine learning research also falls under this category of computational 
experimentation. However, reproducibility in AI is not easily accomplished (Hunold and 
Träff 2013; Fokkens et al. 2013; Hunold 2015). This may be because AI research has its own 
unique reproducibility challenges. Ioannidis (2005) suggests that the use of analytical 
methods which are still a focus of active investigation is one reason it is comparatively 
difficult to ensure that computational research is reproducible. For example, Henderson et al. 
(2017) show that problems due to nondeterminism in standard benchmark environments 
and variance intrinsic to AI methods require proper experimental techniques and reporting 
procedures. Acknowledging these difficulties, computational research should be documented 
properly so that the experiments and results are clearly described.  
 The AI research community should strive to facilitate reproducible research, following 
sound scientific methods and proper documentation in publications. Concomitant with 
reproducibility is open science, which involves sharing data, software, and other science 
resources in public repositories using permissive licenses. Open science is increasingly 
associated with FAIR principles to ensure that science resources have the necessary metadata 
to make them findable, accessible, interoperable, and reusable (Wilkinson et al. 2016). 
Modern digital scholarship promotes proper credit to scientists who document and share 

Odd Erik Gundersen, Yolanda Gil, David W. Aha



Benchmarking for DREAM Challenges
[Srivastava et al PSB 2019]
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Will AI Write the Scientific Papers of the Future?

Digital'Scholarship'

Provenance'and'methods:''
Work%low/scripts.specifying.

data%low,.codes,..
con%iguration.%iles,..

parameter.settings,.and..
runtime.dependencies.

Data:'
Include.data.as..

supplementary.materials.
and.pointers.to..
data.repositories.

Software:'
For.data.preparation,.data.
analysis,.and.visualization.

Open'Science'

Open'licenses:'
Open.source.licenses.for...

data.and.software..
(and.provenance/work%low).

Persistent'identi9iers:'
For.data,.software,.and.authors.
(and.provenance/work%low).

Sharing:'
Deposit.data.and.software..
.(and.provenance/work%low)..
in.publicly.shared.repositories.

Metadata:''
Structured.descriptions.of.the..

characteristics.of.data.and.software.
(and.provenance/work%low).

Citations:'
Citations.for.data.and.software.
(and.provenance/work%low).

Reproducible'Publication'

Text:'
Narrative.of.the.method,.
some.data.is.in.tables,.
.%igures/plots,.and.the..

software.used.is.mentioned.

Modern'Paper'

Geoscience'Paper'of'the'Future'Scientific Paper of the Future  

Common 
entities

Crowdsourced
vocabularies

Scientific data
repositories

Software and 
models

Data analysis 
processes

Collaborative
methods

Provenance

Automating
discoveries

Model
integration

Open reproducible
publications

AAAI Presidential Address, February 2020
https://vimeo.com/400177695

https://vimeo.com/400177695


Thank you!

• Varun Ratnakar, Daniel Garijo, Deborah Khider, Maximiliano Osorio, Hernan Vargas (USC)
• Workflows: Jihie Kim, Ewa Deelman, Karan Vahi; Rafael Ferreira, Rajiv Mayani, Hyunjoon Jo, 

Yan Liu, Dave Kale (USC); Ralph Bergmann (U Trier); William Cheung (HKBU); Oscar Corcho
(UPM); Pedro Gonzalez, Gonzalo Castro (UCM); Paul Groth (UA); Ricky Sethi (FSU); Carole 
Goble (UM); Chris Mattmann, Paul Ramirez, Dan Crichton, Rishi Verma (JPL); Natalia 
Villanueva (UTEP)

• Linked Earth and Organic Data Science: Julien Emile-Geay, Deborah Khider (USC); Nick McKay 
(NAU); Felix Michel and Matheus Hauder (TUM); Chris Duffy (PSU); Paul Hanson, Hilary 
Dugan, Craig Snortheim (U Wisconsin); Jordan Read (USGS); Neda Jahanshad (USC)

• Biomedical workflows: Phil Bourne, Sarah Kinnings (UCSD); Chris Mason (Cornell); Joel Saltz, 
Tahsin Kurk (Emory U.); Jill Mesirov, Michael Reich (Broad); Shannon McWeeney,  Christina 
Zhang (OHSU); Parag Mallick, Ravali Adusumilli, Hunter Boyce (Stanford U.) 

• Geosciences workflows: Paul Hanson (U Wisconsin), Tom Harmon & Sandra Villamizar (U 
Merced), Tom Jordan & Phil Maechlin (USC), Kim Olsen (SDSU); Suzanne Pierce (UT); Chris 
Duffy & Armen Kemanian (PSU); Scott Peckham & Maria Stoica (CU)

• And many others!


