

A boat goes 30 km upstream and 44 km downstream in 10 hours. In 13 hours‘ it can go 40 km upstream and 55 km downstream. Determine the speed of the stream and that of the boat in still water.

Let speed of boat in still water be $\mathrm{x} \mathrm{km} / \mathrm{h}$ and speed of stream be $\mathrm{y} \mathrm{km} / \mathrm{h}$.
Speed upstream $=(x-y) \mathrm{km} / \mathrm{h}$
Speed downstream $=(x+y) k m / h$
Let $\frac{1}{x-y}=a$ and $\frac{1}{x+y}=b$
$\frac{30}{x-y}+\frac{44}{x+y}=10 \Rightarrow 30 a+44 b=10 \Rightarrow 120 a+176 b=40$
$\frac{40}{x-y}+\frac{55}{x+y}=13 \Rightarrow 40 a+55 b=13 \Rightarrow 120 a+165 b=39$
On subtracting, we get,
$\mathrm{b}=\frac{1}{11}$
$\therefore 30 a+4=10 \Rightarrow 30 a=6 \Rightarrow a=\frac{1}{5}$
$\therefore x-y=5$ and $x+y=11$
On solving, we get
$\mathrm{x}=8, \mathrm{y}=3$
\therefore Speed of boat in still water $=8 \mathrm{~km} / \mathrm{h}$
And, Speed of stream $=3 \mathrm{~km} / \mathrm{h}$

Do you want to achieve 99\% in CBSE 10? ×

$+$
 \times

CBSE 102019 RESULTS

\qquad

During the medical check-up of 35 students of a class their weights were recorded as follows:

Weight (in. kg.)	$38-40$	$40-42$	$42-44$	$44-46$	$46-48$	$48-50$	$50-52$
No. of students	3	2	4	5	14	4	3

Draw a less than type and a more than type ogive from the given data.Hence obtain the median weight from the graph.

Classes	f	c.f		c.f.	
$38-40$	3	3	$(40,3)$	35	$(38,35)$
$40-42$	2	5	$(42,5)$	32	$(40,32)$
$42-44$	4	9	$(44,9)$	30	$(42,30)$
$44-46$	5	14	$(46,14)$	26	$(44,26)$
$46-48$	14	28	$(48,28)$	21	$(46,21)$
$48-50$	4	32	$(50,32)$	7	$(48,7)$
$50-52$	3	35	$(52,35)$	3	$(50,3)$

We plot the points $(40,3),(42,5),(44,9),(46,14),(48,28),(50,32),(52,35)$. We join these points with a smooth curve to get the 'less than' ogive as shown in Fig.
Then, we plot the points $(38,35),(40,32),(42,30),(44,26),(46,21),(48,7),(50,3)$ on the same axes. By joining these points with a smooth curve to get 'more than' ogive. Since, the two curves intersect at the point, whose abscissa is 47 (approx). Hence, the required median weight is 47 kg (approx.).

Through the midpoint of M of the side CD of a parallelogram $A B C D$, the line $B M$ is drawn intersecting $A C$ in L and $A D$ produced in E. Prove that $E L=2 B L$

Given : $A B C D$ is a parallelogram, M is the midpoint of $C D$. $B M$ intersects $A C$ at L and $A D$ produced at E.
To prove : $E L=2 B L$
Pr oof: In $\triangle B M C$ and $\triangle E D M$
$\angle D E M=\angle M B C \quad$ (alternate angles)
$\therefore \triangle B M C \cong \triangle E D M \quad(A S A$ congruence $)$
$\therefore D E=B C$ (c.p.c.t)
But $B C=A D \quad$ (opposite sides of parallelogram $A B C D)$
$\therefore A D=D E \Rightarrow A E=2 A D=2 B C$
In $\triangle A E L$ and $\triangle C B L$

$\angle \mathrm{ALE}=\angle \mathrm{BLC}$ (Vertically opposite angles) $\angle \mathrm{AEL}=\angle \mathrm{LBC}$ (alternate angles)
$\therefore \triangle \mathrm{AEL}=\angle \mathrm{CBL}$ (AA similarity axiom)
$\Rightarrow \frac{A E}{B C}=\frac{A L}{L C}=\frac{E L}{B L}$
$\Rightarrow \frac{E L}{B L}=\frac{A E}{B C}$
$\Rightarrow \frac{E L}{B L}=\frac{A D+D E}{B C}$
$\Rightarrow \frac{E L}{B L}=\frac{B C+B C}{B C}$
$\Rightarrow \frac{E L}{B L}=\frac{2 B C}{B C}$
$\Rightarrow \frac{E L}{B L}=2$
$\therefore E L=2 B L$

The angle of elevation of an aeroplane from point A on the ground is 60°. After flight of 15 seconds, the angle of elevation changes to 30°. If the aeroplane is flying at a constant height of $1500 \sqrt{3} m$, find the speed of the plane is $k, / h r$.

Height of aeroplane $=B D=C D=1500 \sqrt{3} \mathrm{~m}$ and
$\angle B A E=60^{\circ}$ and $C A E=30^{\circ}$
In traingle $A D B \tan 60^{\circ}=\frac{150 \sqrt{3}}{A D}$
$\Rightarrow \sqrt{3}=\frac{1500 \sqrt{3}}{A D}$
$\Rightarrow A D=1500 \mathrm{~m}$
In triangle $C A E \tan 30^{\circ}=\frac{1500 \sqrt{3}}{A E}$

$\Rightarrow \frac{1}{\sqrt{3}}=\frac{1500 \sqrt{3}}{A D}$
$\Rightarrow A E=1500 \times 3=4500 \mathrm{~m}$
Distance covered by plane in 15 second :

$$
B C=D E=A E-A D=4500-1500=3000 m
$$

Speed of aeroplane $=\frac{3000}{15}=200 \mathrm{~m} / \mathrm{s}=720 \mathrm{~km} / \mathrm{hr}$

A hemispherical tank, full of water, is emptied by a pipe at the rate of $\frac{25}{7}$ litres per sec. How much time will it take to empty half the tank if the diameter of the base of the tank is 3 m ?

Let $r m$ be the radius of the hemispherical tank, then
$r=\frac{3}{2} m$.
Now, volume of hemispherical tank
$=\frac{2}{3} \pi r^{3}$
$=\left(\frac{2}{3} \times \frac{22}{7} \times \frac{3}{2} \times \frac{3}{2} \times \frac{3}{2}\right) m^{3}$
And, Volume of water to be emptied
$=\frac{1}{2}$ (Volume of hemispherical tank)
$=\left(\frac{1}{2} \times \frac{99000000}{14}\right) \mathrm{cm}^{3}$
$=\frac{99000}{28}$ litres
Hence,
Time taken to half empty the tank
$=\frac{99000}{28} \times \frac{7}{25}$ seconds
$=16.5$ minutes.

Draw a circle of radius 4 cm . Construct a pair of tangents to it, the angle between which is 60°. Also justify the construction. Measure the distance between the centre of the circle and the point of intersection of tangents

Steps of construction:

Step I : Draw a circle with centre O and radius 4 cm .
Step II: Draw any diameter AOB.
Step III: Make $\angle A O P=60^{\circ}$. OP is radius which intersect at R.
Step IV : Draw PQ $\perp \mathrm{OP}$ and $\mathrm{BE} \perp \mathrm{OB}$. PQ and BE intersect at R.

Step V : Hence, RB and RP are the required tangents.

Step VI : Measure of $\mathrm{OR}=8 \mathrm{~cm}$.
Justification:
$\therefore \quad \angle \mathrm{OPQ}=90^{\circ} \quad \Rightarrow \mathrm{PR}$ is a tangent to the circle.
Also $\angle \mathrm{OBR}=90^{\circ} \quad \Rightarrow \mathrm{BR}$ is a tangent to the circle.
Now, $\angle \mathrm{POB}=180-60=120^{\circ}$
$\therefore \quad$ In \square BOPR,

CLASS

Awarded
 USER'S CHOICE APP AWARD 2019

(1). Category Everyday Essentials

Download the FREE App
©

LEADERBOARD

x

UMANG 10 - COMPLETE MATHS PLAYLIST

Maths CBSE Class 10 | Umang | CBSE 2020 v

Vedantu Class 9 \& 10
Updated yesterday
VIEW FULL PLAYLIST

Polynomials - Playlist | Maths Class 10 CBSE | Umang Maths
Vedantu Class 9 \& 10
VIEW FULL PLAYLIST

Circles - Playlist | CBSE Class 10 Maths Chapter - 10 | Umang...
Vedantu Class $9 \& 10$
Updated 2 days ago VIEW FULL PLAYLIST
L-1 LINEAREQUATIC
WORD
PROBLEM
umang cheme

Linear Equations - Playlist Maths Class 10 CBSE | Umang..

Vedantu Class 9 \& 10
 VIEW FULL PLAYLIST

Quadratic Equations - Playlist | Maths Class 10 Chapter 4 |...
Vedantu Class 9 \& 10
VIEW FULL PLAYLIST

Triangles - Playlist | Maths Class 10 CBSE I Umang Maths
Vedantu Class 9 \& 10 VIEW FULL PLAYLIST

01 TRIGONOMETRY TRIGONOMETRY BASICS	

Trigonometry - Playlist | Maths Class 10 CBSE | Umang Maths
Vedantu Class 9 \& 10
VIEW FULL PLAYLIST
Vedath MASTE
SCORE $100 \% \mathrm{~N}$ ARK
IN TRIGONOM ETI 11
FOR CBSE 10TH
BOARD EXAMS

Arithmetic Progression - Playlist Maths Class 10 Chapter 5 I...

> Vedantu Class 9 \& 10
> VIEW FULL PLAYLIST

CBSE Class 10 Maths Chapter 7 ..

Vedantu Class 9 \& 10
VIEW FULL PLAYLIST

Real Numbers - Playlist | Maths Class 10 CBSE | Umang Maths
Vedantu Class 9 \& 10
VIEW FULL PLAYLIST

Constructions - Playlist | CBSE Class 10 Maths Chapter 11 |...

Vedantu Class 9 \& 10
VEW FULL PLAYLIST

Areas Related to Circle - laylist |

SPRINT X 2020 - COMPLETE MATHS PLAYLIST

Maths - Sprint X 2020 । CBSE Class 10

21 videos • 33,276 views • Updated yesterday
Public ${ }^{-}$
> $\rightarrow \cdots$
No description

Vedantu Class 9 \& 10

= SORT BY

Real Numbers Sprint X 2020 | Class 10 CBSE Maths Chapter 1 | NCERT Solutions | Vedantu Class 10 Vedantu Class 9 \& 10

2

Polynomials Sprint X 2020 | Class 10 Maths Chapter 2 | CBSE 2020 Board Exam | NCERT Vedantu Class 10 Vedantu Class 9 \& 10

3

Pair of Linear Equations in Two Variables SprintX | CBSE Class 10 Maths Chapter 3 | NCERT Solutions Vedantu Class 9 \& 10

4

Quadratic Equations SprintX 2020 | NCERT Solutions for Class 10 Maths | CBSE Board Exam | Mid-Term Vedantu Class 9 \& 10

5

Quadratic Equations Part 2 SprintX 2020 | NCERT Solutions for Class 10 Maths | CBSE Board Exam Vedantu Class 9 \& 10

6

Arithmetic Progressions SprintX 2020 | NCERT Solutions for Class 10 Maths | CBSE Board Exam Vedantu Class 9 \& 10

Arithmetic Progressions SprintX 2020 | L2 | NCERT Solutions for Class 10 Maths | CBSE Board Exam Vedantu Class $9 \& 10$


```
Reach out to me @
harsh.priyam@vedantu.com
```

