

Standards for Knowledge Graphs in the Financial Sector

Mike Bennett, Hypercube Ltd.

Ontology Summit 2020

13 May 2020

Overview

- Finance Industry Motivations
- Industry Use Cases
- FIBO
- Styles of ontology
- ISO 20022
- Ontology Standards Usage
- Summary and Conclusions

Finance Industry Motivations

Systemic Risk: What Happened?

- Firms took a long time to establish their exposures to endangered banks
- Data wasn't the problem
- Knowledge was

FIBO

STANDARDS-BASED INFRASTRUCTURE

FIBO Early Development

FIBO: Scope and Content

Upper Ontology			
FIBO Foundations: High level abstractions			
FIBO Financial Business and Commerce		FIBO Indices and Indicators	
FIBO Contract Ontologies			
, Equities)	Securities (Debt)		
Derivatives		Loans, Mortgage Loans	
Funds		Rights and Warrants	
	Upper C dations: H FIBO Fi Busine Comr BO Contra Equities)	Upper Ontology dations: High level al FIBO Financial Business and Commerce BO Contract Ontologi Equities) Sec Loans Righ	

FIBO Pricing and Analytics (time-sensitive concepts) Pricing, Yields, Analytics per instrument class

FIBO Process

Corporate Actions, Securities Issuance and Securitization

Future FIBO: Portfolios, Positions etc.

Concepts relating to individual institutions, reporting requirements

FIBO Ecosystem

Industry Collaboration (Ecosystem)

- GitHub for collaborative coding
- JIRA for issue management
- Jenkins for automated testing
- Confluence (wiki) for audit trail

• BTDM Methodology (Tested)

- Built 🛛 Test 🗋 Deploy 🗋 Maintain methodology for governance
- Full end-to-end ontology (visible and navigable)
- Fully extendable for proprietary applications
- Expressed in both OWL and UML (auto-generated)
- Automated testing of machine executable FIBO

Properties with No Domain or Range

Styles of ontology

Concept Ontology

Application Ontology

Foundational v Correspondence Ontologies

Deep classification hierarchy of types of thing in the world, with relationships and sufficient logic to disambiguate

> Self-contained classes, properties and logical statements corresponding to some set of things in the world

Conceptual and Operational Ontology

Conceptual and Operational Ontology

- OWL is an application language!
- OWL plus data (Knowledge Graph) is a physical artifact
- There are real things, the definitions of which are not based on data
 - There are also (some) real things that *are* natively data (e.g. Identifiers)

Data Surrogates versus Real Things

- Look for signatures in data that imply the presence of real world, identifying matter
- Frame the necessary conditions for membership of a class (in a logical ontology) in terms of what would be found (true) in data when the class of thing is there
- Inference as distinct from meaning in the original sense
- From the data you can infer that a thing exists in reality
- Real meaning by definition mostly does not rely on data!

Reference v Application Ontologies

Reference v Application Ontologies

ISO 20022

ISO 20022 Standard Organs

ISO 20022 compliance at model level

ISO 20022 Semantics: Trade

- A trade normally leads to an obligation.
- Different types of trade create different types of obligations.

Details

- Map ISO 20022 metamodel to OWL/SKOS/RDF to be documented within a Technical Report
- Create an OWL/SKOS/RDF metamodel for code lists to be documented within a Technical Report
- SWIFT Standards should be able to create the transform from the ISO 20022 e-repository to the semantic version.
- The RA could then run the transform for each update to the e-repository.
- The working group and possibly a follow on study group or working group would be responsible for the evolution and functionality of the transform and the semantic version of the e-repository. The RA will not be responsible for maintenance of the transform or the artifacts generated.

ISO 20022 Semantics

- Phase 1: OWL representation of ISO 20022 Metamodel
 - i.e. <<BusinessComponent>>, <<MessageComponent>> etc. stereotypes
- OWL Usage
 - Single format (OWL) for all meta-levels (M2 and M1)
 - Single namespace?
- Enables querying etc. across the whole space
 - Ontology of metamodel elements for ISO 20022, FIX etc. to map native message content
 - Representation of business concepts (securities, transactions etc.) for concept mapping
 - Potentially, representation of mapping relations as OWL properties
- The conceptual ontology will be a later phase of work
- Some mapping proofs of concept...

Ontology to Data Model

Mapping Considerations (1)

Data Model to Ontology

Mapping Considerations (2)

Mapping Ontology

Mapping Ontology

- Consider a data model with multiple prope
 - These are usually optional
 - There are a lot of them
- Ontology (of any sort) should get rid of optionality
 - Sub-classes, each with properties or restrictions saying what makes that class (of thing) what it is
- Ontology treats properties as first class citizen (they are not attached to a class)
- These properties all have narrow meanings, specific to the presence of that property on that class

Loan Borrower Loan Borrower Name Loan Borrower SSID Loan Borrower Address Line 1 ... Loan Borrower ZIP Code

Reasoning / Inference Processing Ontology

Semantic Web Applications

• Semantic Operational Processing *Reasons* over Data to Infer Classifications and Relationships

Ontology Standards Usage

Conclusions

- There is no 'one size fits all' style of ontology
- Different usages indicate different ontology styles
 - Data or Things
 - Deep foundational hierarchies or correspondence graphs
 - Deep property hierarchy for mapping, restrictions for reasoning
- Novel applications like AI and NLP may require further distinctions

Thank You!

Mike Bennett Hypercube Ltd – a member of the Semantic Shed www.hypercube.co.uk

Takeaways: Financial Ontology Standards Applications

Integration

Regulatory Reporting with Semantics

Common

ontology

REPORTING ENTITY

Common

ontology

Data is mapped from each system of record into a common ontology Reported as standardized, granular data Agnostic to changes in forms

REGULATORY AUTHORITY

Receives standardized, granular data aligned with standard ontology (FIBO)

Uses semantic queries (SPARQL) to assemble information

Changes to forms need not require reengineering by reporting entities

Applications

Data-focused Ontology

and identification

David Newman, Wells Fargo

Virtual Data Lakes: ET and NoETL

