

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The art of successful Kubernetes failures

Mitch Beaumont

O P E 0 9

Principal Solutions Architect

Amazon Web Services

“Everything fails,
all the time"
Dr Werner Vogals, CTO Amazon.com

How failures can be successful?
Using data to improve quality and reliability of our systems

Reducing the blast radius

How failures can be successful?
Using data to improve quality and reliability of our systems

Reducing the time to detection

Reducing the blast radius

How failures can be successful?
Using data to improve quality and reliability of our systems

Reducing the time to detection

Reducing the time to mitigation

Reducing the blast radius

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Cluster isolation

Production

cluster

Development

cluster

Cluster isolation

Production

cluster

Development

cluster

aws$ cat << EOF > cluster.yaml

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig
metadata:
name: cloudwatch-cluster
region: ap-southeast-2
nodeGroups:
- name: default
instanceType: m5.large
desiredCapacity: 3
iam:
withAddonPolicies:
cloudWatch: true
albIngress: true
autoScaler: true
appMesh: true
xRay: true

cloudWatch:
clusterLogging:
enableTypes: ["all"]

EOF

aws$ eksctl create cluster -f cluster.yaml

Scheduling (affinity and anti-affinity)

Production

cluster

Scheduling (affinity and anti-affinity)

my-single-cluster

apiVersion: apps/v1
kind: Deployment
metadata:
name: redis-cache

spec:
selector:
matchLabels:
app: store

replicas: 3
template:
metadata:
labels:

app: store
spec:
affinity:

podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:

matchExpressions:
- key: app
operator: In
values:
- store

topologyKey: "kubernetes.io/hostname"
containers:
- name: redis-server

image: redis:3.2-alpine

These three redis pods won’t be

scheduled on the same node

Scheduling (affinity and anti-affinity)

my-single-cluster

apiVersion: apps/v1
kind: Deployment
metadata:
name: redis-cache

spec:
selector:
matchLabels:
app: store

replicas: 3
template:
metadata:
labels:

app: store
spec:
affinity:

podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:

matchExpressions:
- key: app
operator: In
values:
- store

topologyKey: "kubernetes.io/hostname"
containers:
- name: redis-server

image: redis:3.2-alpine

These three redis pods won’t be

scheduled on the same node

Namespaces

Production

namespace

Development

namespace

Namespaces

production-namespace

development-namespace

aws$ kubectl create namespace production-namespace

apiVersion: v1
kind: Pod
metadata:
name: cats-pod
namespace: production-namespace
labels:
app: cats-application

spec:
containers:
- name: cats-container

image: nginx:1.7.8

aws$ kubectl apply -f pod.yaml

This pod will be deployed in to

the production-namespace

Resource quotas

Resource Quotasaws$ kubectl create namespace dev-namespace

apiVersion: v1
kind: ResourceQuota
metadata:
name: dev-namespace-quota

spec:
hard:
cpu: "10"
memory: 20Gi
pods: "10"

aws$ kubectl apply -f dev-namespace-quota –n dev-namespace

These limits will be applied to

whichever namespace we apply

this resource quota object to

A quick recap

Isolate workloads using multiple clusters

Affinity and anti-affinity rules can be configured to separate workloads

Use resource quotas to control resource usage

Reducing the blast radius

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Detection

The action or process of identifying the
presence of something concealed

Definition

Metrics

What: Numeric representation of

data measured over intervals of time

Why: Useful for identifying trends,

mathematical modeling, and

prediction

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Things that produce metrics: the control plane

Things that produce metrics: the nodes

CPU Utilisation

Things that produce metrics: The pods

Amazon CloudWatch Container Insights: Dashboard

Amazon CloudWatch Container Insights

aws$ cat << EOF > cw-namespace.yaml

apiVersion: v1
kind: Namespace
metadata:
name: amazon-cloudwatch
labels:
name: ap-southeast-2

EOF

aws$ kubectl apply -f cw-namespace.yaml

amazon-cloudwatch

Amazon CloudWatch Container Insights

aws$ cat << EOF > cw-service.yaml

apiVersion: v1
kind: ServiceAccount
metadata:
name: cloudwatch-agent
namespace: amazon-cloudwatch

kind: ClusterRole
apiVersion: rbac.authorisation.k8s.io/v1
metadata:
name: cloudwatch-agent-role

rules:
- apiGroups: [""]
resources: ["pods", "nodes", "endpoints"]
verbs: ["list", "watch"]

... EOF

aws$ kubectl apply -f cw-service.yaml

amazon-cloudwatch

Amazon CloudWatch Container Insights

aws$ cat << EOF > cw-configmap.yaml

apiVersion: v1
data:
cwagentconfig.json: |
{
"logs": {

"metrics_collected": {
"kubernetes": {

"cluster_name": "{{cluster_name}}",
"metrics_collection_interval": 60...

... EOF

aws$ kubectl apply -f cw-configmap.yaml

amazon-cloudwatch

Amazon CloudWatch Container Insights

aws$ cat << EOF > cw-configmap.yaml

apiVersion: apps/v1
kind: DaemonSet
metadata:
name: cloudwatch-agent
namespace: amazon-cloudwatch

spec:
selector:
matchLabels:
name: cloudwatch-agent

... EOF

aws$ kubectl apply -f cw-configmap.yaml

amazon-cloudwatch

Logs

Logs

What: Immutable, timestamped

record of discrete events that

happened over time

Why: Useful for uncovering emergent

and unpredictable behaviour

Collecting logs from your Kubernetes clusters

Amazon CloudWatch,

CloudWatch Logs and

CloudWatch Logs Insights

Control plane

Nodes

Applications

Enable control plane logging

aws$ cat << EOF > cluster.yaml

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig
metadata:
name: cloudwatch-cluster
region: ap-southeast-2
nodeGroups:
- name: default
instanceType: m5.large
desiredCapacity: 3
iam:
withAddonPolicies:
cloudWatch: true

cloudWatch:
clusterLogging:
enableTypes: ["all"]

EOF

aws$ eksctl create cluster -f cluster.yaml

Collecting logs from your nodes

FluentD FluentD FluentD

Amazon CloudWatch Logs Insights

STATS avg(number_of_container_restarts) as avg_number_of_container_restarts by PodName
| SORT avg_number_of_container_restarts DESC

Logs

Observability

Observability is the goal

CloudWatch dashboards

Control plane

Nodes

Applications

Traces

What: Representation of a series of

related distributed events that encode

the end-to-end request flow through a

distributed system

Why: Provides visibility into both the

path traversed by a request as well as

the structure of a request

Logs

Tracing with AWS X-Ray

AWS X-Ray

HTTP Call

Service A

Pod 1

Pod 2
Pod 3

Service B

Pod 1

Pod 2
Pod 3

Tracing with AWS X-Ray

Configure IAM to

allow pods running

on nodes to send

traces to X-Ray

Deploy the AWS

X-Ray Daemon

Integrate AWS X-Ray

SDK in to your

application

AWS App Mesh and AWS X-Ray

avg. 42ms

350 t/min

avg. 19ms

350 t/min

avg. 20ms

350 t/min

kubernetes/service-a

AWS::AppMesh::Proxy

kubernetes/service-b

AWS::AppMesh::Proxy

kubernetes/service-b

remote

Clients

Service A / Pod 1 Service B / Pod 1

A quick recap

Determine your health vs diagnostic metrics

Logs provide a rich source of events which can be used

Dive deeper using application level tracing

Reducing the blast radius | Reducing the time to detection

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Mitigation

The action of reducing the severity,
seriousness, or painfulness of something

Definition

Reducing with: Auto Scaling group

Availability zone A Availability zone B

Auto Scaling Group

Auto Scaling Group

Reducing with: Auto Scaling group

Availability zone A Availability zone B

Auto Scaling Group

Auto Scaling Group

Reducing with: health probes

Readiness

Is my application
ready to service

requests?

Liveness

Is my application
healthy?

aws$ cat << EOF > readinessProbe.yaml

readinessProbe:
exec:
command:
- cat
- /tmp/healthy

initialDelaySeconds: 5
periodSeconds: 5

EOF

aws$ kubectl apply -f readinessProbe.yaml

Reducing with: health probes

Readiness

Is my application
ready to service

requests?

Liveness

Is my application
healthy?

aws$ cat << EOF > livenessProbe.yaml

livenessProbe:
httpGet:
path: /healthz
port: 8080

initialDelaySeconds: 5
periodSeconds: 5

EOF

aws$ kubectl apply -f livenessProbe.yaml

A quick recap

Leverage AWS native capabilities to automatically respond

Have a plan for cluster recovery

Use reediness and liveness probes reduce impact

Reducing the blast radius | Reducing the time to detection | Reducing the time to mitigation

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Failing successfully with Kubernetes

What steps are your taking to reduce the blast radius?

How could you cut the time to detection in half?

How you could cut the time to migration in have?

Thank you!

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Mitch Beaumont

beaumonm@amazon.com

