


© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

DevOps for data science: 
Operationalising machine learning

Julian Bright

I N T 0 6

AI Specialist Solutions Architect 

Amazon Web Services 



Agenda

What is MLOps?

What’s new in Amazon SageMaker for MLOps

Orchestration frameworks and tools

MLOps Demo

Sidebar: Data integration options

Wrap up



© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.



© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

”Our highest priority is to satisfy 
the customer through early and 
continuous delivery of valuable 
software.”

agilemanifesto.org/principles

http://agilemanifesto.org/principles


© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

”Our highest priority is to satisfy 
the customer through early and 
continuous delivery of valuable 
software insights from data.”

agilemanifesto.org/principles

http://agilemanifesto.org/principles


Dev Ops for traditional software development

Source Build Test Deploy Monitor

Minutes



Machine Learning Deployment

Algorithma survey found 55% 
of companies have not deployed 
a machine learning model. 

• 15% < 1 week

• 50% 1 week < 3 months

• 18% > 3 months

https://info.algorithmia.com/2020

0%

5%

10%

15%

20%

25%

30%

Not sure 0-7 days 8-30

days

31-90

days

91-365 1+years

Model deployment timeline



Machine Learning code and data are independent

Model

Data

Training

Algorithm

Model architecture

Configuration

Data validation

Shuffle and split

Transformation & feature engineering

Model analysis

Model tuning

Model deploymentCode



Challenge: ML code is only small part of the solution

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems 

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems


Challenge: Different teams might own part of process

https://martinfowler.com/articles/cd4ml.html  



Challenge: Ensuring 
test quality

Automated tests can add value 
and improve overall quality of ML

• Validating data distribution

• Validating model quality metrics

• Validating model bias & fairness

https://martinfowler.com/bliki/TestPyramid.html

https://martinfowler.com/bliki/TestPyramid.html


Drift could happen from various sources 
and hence you should monitor all these 
sources to ensure full coverage. 

Training data

• Schema & distribution of incoming data

• Distribution of labels

Prediction responses

• Distribution of predictions

• Quality of predictions via feedback

https://github.com/joelcthomas/modeldrift

Challenge: Detecting 
model drift

https://github.com/joelcthomas/modeldrift


ML Ops
Key challenges we are looking to solve across MLOps culture and practice

Role Model reproducibility
Model audibility and 

explainability

Model deployment and 

monitoring

Data Scientist
Sharing and 

collaboration 

Model analysis and 

evaluation
Concept drift detection



ML Ops
Key challenges we are looking to solve across MLOps culture and practice

Role Model reproducibility
Model audibility and 

explainability

Model deployment and 

monitoring

Data Scientist
Sharing and 

collaboration 

Model analysis and 

evaluation
Concept drift detection

Data Engineer
Machine learning 

pipelines

Code and data artifact 

integrity

Scalability and 

performance



ML Ops
Key challenges we are looking to solve across MLOps culture and practice

Role Model reproducibility
Model audibility and 

explainability

Model deployment and 

monitoring

Data Scientist
Sharing and 

collaboration 

Model analysis and 

evaluation
Concept drift detection

Data Engineer
Machine learning 

pipelines

Code and data artifact 

integrity

Scalability and 

performance

Dev Ops
Visualise experiment

management

Capture training logs 

and prediction results

Continuous 

deployment and 

rollback



© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.



The AWS machine learning stack

Broadest and most complete set of machine learning capabilities

Vision Speech Text Search Chatbots Personalization Forecasting Fraud Development Contact centers

Ground 

Truth
ML 

Marketplace

Amazon 

SageMaker

Neo

Augmented 

AI

Built-in

algorithms
Notebooks Experiments

Model 

training & 

tuning

Debugger Autopilot
Model

hosting
Model Monitor

AWS Deep Learning

AMIs & Containers

GPUs &

CPUs

Amazon Elastic

Inference
AWS Inferentia FPGA

Amazon
Rekognition

Amazon
Polly

Amazon
Transcribe

+Medical

Amazon
Comprehend

+Medical

Amazon
Translate

Amazon
Lex

Amazon
Personalize

Amazon
Forecast

Amazon
Fraud Detector

Amazon
CodeGuru

AI services

ML services

ML frameworks & infrastructure

Amazon
Textract

Amazon
Kendra

Contact Lens

for Amazon Connect

Amazon SageMaker Studio IDE

Amazon SageMaker

DeepGraphLibrary



Amazon SageMaker Experiments
Organise, track, and compare training experiments

Tracking at scale Visualisation Metrics and logging Fast Iteration

Track parameters 

and metrics across 

experiments and users

Custom organisation

Organise experiments 

by teams, goals 

and hypotheses

Easily visualise

experiments 

and compare

Log custom metrics 

using the Python SDK 

and APIs

Quickly go back & 

forth and maintain 

high quality



Amazon SageMaker Debugger
Analysis and debugging, explainability, and alert generation

Data analysis & 

debugging

Relevant data 

capture

Automatic error 

detection

Improved productivity 

with alerts

Visual analysis

and debugging

Analyse and debug data 

with no code changes

Data is automatically 

captured for analysis
Errors are automatically 

detected based on rules

Take corrective action 

based on alerts

Visually analyse and 

debug from Amazon 

SageMaker Studio



Amazon SageMaker model monitor
Continuous monitoring of models in production

Automatic data 

collection

Continuous 

monitoring

Integration 

with Amazon 

CloudWatch 

Data is automatically 

collected from 

your endpoints

Automate corrective 

actions based on 

CloudWatch alerts

Visual

data analysis

Define a monitoring 

schedule, and detect 

changes in quality against 

a pre-defined baseline

See monitoring results, 

data statistics, and 

violation reports in Amazon 

SageMaker Studio

Flexibility 

with rules

Use built-in rules to 

detect data drift, or 

write your own rules 

for custom analysis



© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.



MLOps orchestration options

1. Amazon SageMaker Operators 

• Apache Airflow

• Kubernetes

2. AWS Developer Tools

• AWS CodePipeline, AWS CodeBuild, AWS 
CodeDeploy and AWS CloudFormation

Amazon SageMaker provides native integration for a number of orchestration frameworks

3. AWS Step Functions

• AWS Step Functions Data Science SDK 
for Amazon SageMaker

4. Third Party open source

• ML Flow, Netflix Metaflow



Amazon SageMaker Operators for Apache Airflow
Orchestrate and automate sequences of ML tasks

SageMaker
Training 
Operator

SageMaker
Tuning 

Operator

SageMaker
Model

Operator

SageMaker
Transform 
Operator

SageMaker
EndpointConfig

Operator

SageMaker
Endpoint 
Operator



Fully managed 

infrastructure in 

Amazon SageMaker

Amazon SageMaker Operators for Kubernetes
Kubernetes users can train, tune, and deploy models in Amazon SageMaker



AWS Developer Tools

Continuous integration

1. Automatically kick off a new build when new code is checked in

2. Build and test code in a consistent, repeatable environment

3. Continually have an artifact ready for deployment

4. Continually close feedback loop when build fails

Source Build Test Production



AWS CodePipeline

• Continuous delivery service for fast and 
reliable application updates

• Model and visualise your software 
release process

• Builds, tests, and deploys your code 
every time there is a code change

• Integrates with third-party tools and 
AWS

• Pipeline execution variables



Source Build Test Production

Continuous deployment goals

1. Automatically deploy new changes to staging environments for testing

2. Deploy to production safely without impacting customers

3. Deliver to customers faster: Increase deployment frequency and reduce 

change lead time and change failure rate

Continuous deployment



AWS CodeDeploy

• Automates code deployments to any instance 
and AWS Lambda

• Handles the complexity of updating your 
applications

• Avoid downtime during application deployment

• Roll back automatically if failure is detected

• Deploy to Amazon EC2, Amazon ECS, Lambda, 
or on-premises servers



AWS CloudFormation with CodeDeploy

Best practices for AWS CodeDeploy
provisioning in CloudFormation 

• Layer your application to reduce blast 
radius when updating resources

• Use multiple, isolated environments 
for testing, production, development, 
staging, etc.

• Smaller files are easier to write, test, 
and troubleshoot

Amazon API Gateway

Amazon SageMaker Automatic Scaling

Amazon Cloudwatch Alarms, dashboards

VPCs, NAT gateways, VPNs, subnets

IAM users, groups, roles, policies

Front-end 

API

ML 

resources

Lambda 

functions

Base 

network

Identity & 

security

Monitoring 

resources

AWS CodeDeploy with Pre/Post Hooks



AWS Step Functions Data Science SDK
Visualise end-to-end data science workflows

SageMaker
Training Step

SageMaker
Tuning Step

SageMaker
Model Step

SageMaker
Transform Step

SageMaker
EndpointConfig

Step

SageMaker
Endpoint Step



AWS Step Functions

Simplify building workloads, such as order processing, 
report generation, and data analysis

Write and maintain less code; add services in minutes 

Direct service integrations:

AWS Step 

Functions

Amazon SNS Amazon SQS Amazon 

SageMaker

AWS Glue AWS Batch Amazon ECS AWS Fargate



Simpler integration, less code

With serverless 
polling

With direct 
service integration

Start

End

Lambda 
functions

Start

End

No
Lambda 

functions



Third party open 
source integrations

MLflow: 

An open source platform for the machine 
learning lifecycle



Third party open 
source integrations

Netflix Metaflow: 

Build and manage real-life data science 
projects with ease



© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.



Use case: Transaction 
categorisation

Machine learning classifier predicts bank 
transaction category to provide insights 
on spending.

Automatic model retraining with new 
labelled data.



Transaction categorisation architecture

Amazon SageMaker 

Training Job

Unlabeled 

Transaction Data

Transaction 

Categorisation Model

Amazon SageMaker 

Ground Truth

Labelled 

Transaction Data

Baseline 

Processing Job

Baseline constraints 

and statistics

Amazon SageMaker 

Endpoint

Requests and 

Predictions

Scheduled 

Monitoring Job

Amazon Cloudwatch

Metrics

AWS Lambda 

Retraining

Amazon Cloudwatch

Alarm

Amazon API Gateway

End User

Results: Statistics and 

Violations

Amazon SageMaker 

Augmented AI



AWS CodePipeline

Following are the high level steps:

1. Source

2. Build Artifacts

3. Train

4. Deploy Dev

5. Manual Approval

6. Deploy Prod

7. Monitor



Serverless Continuous Integration and Deployment

AWS 

CodeDeploy

Amazon 

Cloudwatch

Amazon API 

Gateway

Build 

Artifacts
MonitorDeploy 

Prod

AWS 

CodeBuild

Train

Git Source

Training 

Data
Amazon S3 

Artifacts
AWS 

Lambda

AWS 

CloudFormation

Amazon 

SageMaker 

Endpoint

Deploy 

Dev

Approve

Retrain

Training 

Container 

AWS 

CloudFormation

Amazon 

SageMaker 

Training Job



version: 0.2

phases:

install:

runtime-versions:

python: 3.7

commands:  

- pip install boto3

build:

commands:

- python run.py --pipeline-name=${CODEBUILD_INITIATOR#codepipeline/}

post_build:

commands:      

- aws cloudformation package --template-file assets/deploy-prd.yml

--output-template-file assets/template-prd.yml --s3-bucket $ARTIFACT_BUCKET

artifacts:

files:

- assets/*

discard-paths: yes

AWS CodeBuild build specification 



AWS CloudFormation 
Prod Deployment

Extend Dev CloudFormation to include 
Blue/Green Deployment and Monitoring

1. Create Amazon SageMaker Endpoint

2. Enable SageMaker Data Capture, 
Schedule Monitoring and Alarms

3. Execute AWS CodeDeploy Blue/Green 
Lambda deployment

4. Update Amazon API Gateway and 
SageMaker Automatic Scaling



AWS CodeDeploy Blue/Green Lambda deployment



@helper.create

@helper.update

def create_handler(event, context):

# Call boto3 to enable data capture 

return update_endpoint(event)

@helper.delete

def delete_handler(event, context):

delete_endpoint_config(event)

@helper.poll_create

@helper.poll_update

def poll_create(event, context):

endpoint_name = get_endpoint_name(event)

return is_endpoint_ready(endpoint_name)

AWS CloudFormation custom resource Lambda

https://github.com/aws-cloudformation/custom-resource-helper 



{

"captureData": {

"endpointInput": {

"observedContentType": "text/csv",

"mode": "INPUT",

"data": "text,price\nspotify p0d3d89b19 sydney au,11.99",

"encoding": "CSV"

},

"endpointOutput": {

"observedContentType": "text/csv",

"mode": "OUTPUT",

"data": "__label__entertainment,0.0000068826,0.5860334635,0.0012867898...\n",

"encoding": "CSV"

}

}

}

Amazon SageMaker Endpoint Data Capture sample



Amazon SageMaker 
Model Monitoring

Concept drift detection is a two stage 
process orchestrated by the production 
deployment.

1. Create a baseline from the dataset you 
used to train model

2. Schedule monitoring to measure 
model quality with open source Deequ
library

https://github.com/awslabs/deequ

https://github.com/awslabs/deequ


Amazon Cloudwatch
Metrics & Alarms 

Our solution monitors

1. AWS CodeDeploy Blue/Green 
Deployment Alarms

2. Amazon SageMaker Endpoint Latency 
and Response Codes

3. Amazon SageMaker Model Monitoring 
Drift Alarm

Model re-training can be initiated on drift 
detection 



© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.



Recap: Serverless CI/CD

AWS 

CodeDeploy

Amazon 

Cloudwatch

Amazon API 

Gateway

Build 

Artifacts
MonitorDeploy 

Prod

AWS 

CodeBuild

Train

Git Source

Training 

Data
Amazon S3 

Artifacts
AWS 

Lambda

AWS 

CloudFormation

Amazon 

SageMaker 

Endpoint

Deploy 

Dev

Approve

Retrain

Training 

Container 

AWS 

CloudFormation

Amazon 

SageMaker 

Training Job



© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.



Example AWS Step Functions Workflow



# Create workflow steps

training_step = steps.TrainingStep(

'Train Step’, 

estimator=xgb,

data={

'train’: s3_input(inputs['TrainLoc']),

'validation’: s3_input(inputs['ValLoc'])

}, 

)

# Combine into a workflow definition

workflow_def = steps.Chain([

training_step, model_step,

endpoint_config_step, endpoint_step

])

# Update workflow

workflow = Workflow.attach(workflow_arn)

workflow.update(definition=workflow_def)

# Execute workflow

execution = wf.execute(inputs={ 

'TrainLoc': s3_train_path,

‘ValLoc': s3_val_path,

‘EndpointName': ‘mlops-blue'

})

AWS Step Functions Data Science SDK



Orchestration approach summary
Considerations when comparing the following managed approaches

Role CI/CD + Cloud Formation DAG / Step functions

Continuous Integration Source actions detect changes
AWS Step Functions service 

integrations poll for changes 



Orchestration approach summary
Considerations when comparing the following managed approaches

Role CI/CD + Cloud Formation DAG / Step functions

Continuous Integration Source actions detect changes
AWS Step Functions service 

integrations poll for changes 

Staging actions
Native support for blocking at 

stages, and superseding source

Executions run independently, 

state management required



Orchestration approach summary
Considerations when comparing the following managed approaches

Role CI/CD + Cloud Formation DAG / Step functions

Continuous Integration Source actions detect changes
AWS Step Functions service 

integrations poll for changes 

Staging actions
Native support for blocking at 

stages, and superseding source

Executions run independently, 

state management required

Flow
Single pass with support for 

parallel actions

Full flexibility in designing 

loops, conditional logic, retries



Orchestration approach summary
Considerations when comparing the following managed approaches

Role CI/CD + Cloud Formation DAG / Step functions

Continuous Integration Source actions detect changes
AWS Step Functions service 

integrations poll for changes 

Staging actions
Native support for blocking at 

stages, and superseding source

Executions run independently, 

state management required

Flow
Single pass with support for 

parallel actions

Full flexibility in designing 

loops, conditional logic, retries

Change control
Automatic rollbacks.  Support 

for manual approval

Custom compensating actions 

required or error



Sidebar: Data integration options

Data Lineage and provenance is key 
for model reproducibility

• Versioned S3 Data Lake

• Apache Spark on AWS Glue or Amazon 
EMR 

• Third Party Open Source

• Hudi

• Data Version Control (DVC)

• Pachyderm

Amazon S3



Call to action

MLOps is culture and technology working together

Automation increases your deployment velocity, and reduces costs

Leverage Managed Orchestration

Monitor and Alert on deployment lifecycle

Retrain on drift detection



Thank you!

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Julian Bright

julbrigh@amazon.com 


