

Vedantie MASTER TEACHE

PHYSICS GRADE - 12

•LIVE

EEt

Lo 2021

RELATION BETWEEN ELECTRIC FIELD & POTENTIAL

SURI SIR IIT BOMBAY

ACCORDING TO PHYSICS... The glass is never empty

Harsh Sir

Theory Class: Monday & Thursday (9pm) MCQ Class: Wednesday (8pm)

Suri Sir Theory Class: Wednesday & Saturday (9pm) MCQ Class: Monday (8pm)

Arvind Sir

Theory Class: Tuesday & Friday (9pm) MCQ Class: Thursday (8pm)

Daily Schedule JEE 2021

Vedantu JEE 2021 Program

<u>-FEATURES-</u>

- → 2500+ hours of LIVE online teaching
- → 45+ Teachers; from Top IITs and 10+ years experience
- → 750 Tests & 3000 Assignments for Practical Application
- → Instant Doubt Solving By Academic Mentors
- → Replay/Recording of Classes If You've Missed
- → Rank Booster Quizzes
- → Previous Paper Analysis

Boost your learning with Vedantu Pro vdnt.in/YTJEE21

Enroll for FREE

Vedanti Learn LIVE Online

Namaste everyone !

Welcome to today's session

Relation between electric field and potential

Lesson plan

- → Defining equipotential surface
- → Direction of electric field w.r.t equipotential surface
- → Work done to move a charge
- → Finding relation between electric field and potential
- → Various equipotential surfaces

Equipotential surfaces

How many equipotential surfaces can You think of ? same potential at all points is called equipotential surface potential point charge.

Direction of electric field

Is it true for any equipotential surface ?rn of point charge?<mark>vards.</mark>

This means electric field vector drawn at any point on the equipotential surface (Concentric spherical surfaces) is perpendicular to it.

Work done to move charge

dl

+Q

b

This is valid for any equipotential surface. Therefore electric field is always perpendicular to any equipotential surface

Relation between electric field and potential

Let's summarize

- 1. Electric lines of force always intersect an equipotential surface perpendicularly
- 2. Work done to move a charge over an equipotential surface is zero.
- 3. No two equipotential surfaces can intersect each other. If they do, then they will have two values of potential at the point of intersection which is not possible
- 4. From E=-dv/dr, E and dr are inversely proportional. This means equipotential surfaces are crowded together in a region of strong electric field whereas further apart where the field is week.

Keeping these points in mind let's try to map out equipotential surfaces for various field patterns

Uniform field

Line charge

Two equal and opposite charges

Notice how the equipotential surfaces are more crowded near the charge and further apart as we go away from it

JEE Mains Crash Course

- → 90 Live Classes By Best Teachers
 - 3 sessions everyday Mon to Sat for 6 weeks

- → 20+ Comprehensive Tests; Assignments & Detailed Analysis
- → Doubt Solving By Academic Mentors
- → **Replay/Recording** of Classes If You've Missed
- → Important Tips & Tricks To Crack JEE
- → In class Rank Booster Quizzes
- Previous Paper Analysis

Lightning Deal: $₹24999 \implies ₹5999$

Use Coupon Code: SMCC Buy Now @ <u>https://vdnt.in/JEECCE</u>

How to Avail The Lightning Deal 🥖

Visit the <mark>link</mark> mentioned below

https://vdnt.in/JEECCE

<u>Step-1:</u> Click on "ENROLL NOW" <u>Step-2:</u> Click on "I have a coupon code" <u>Step-3:</u>

ENROLL NOW

A charged particle (q = 1.4 mC) moves a distance of 0.4 m along an equipotential surface of 10 V, calculate the work done by the field during this motion.

The potential at a pot x (measure in μ m) due to some charges situated on the x-axis is given by V(x) = 20/(x² - 4) volt. The electric field E at x = 4 μ m is given by (JEE 2007)

- \mathbf{A} (10/9) vot/ μ m and in the +ve x direction
- \mathbf{B} (5/3) volt/ μ m and in the -ve x direction
- **C** (5/3) volt/μm and in the +ve x direction
- \mathbf{D} (10/9) volt/ μ m and in the -ve x direction

For given $\vec{E} = 2x\hat{i} + 3y\hat{j}$ find the potential at (x, y) if V at origin is 5 V.

Some equipotential surface are shown in Fig. What can you say about the magnitude and the direction of the electric field?

y(cm) 30 10 v 0 x(cm)

Study how conductors and equipotential surfaces are related.

COME BACK AND COMMENT BELOW IF YOU HAVE ANY DOUBTS !

https://vdnt.in/JEEVedantu

