

SURI SIR IIT BOMBAY

ACCORDING TO PHYSICS... The glass is never empty

Harsh Sir

Theory Class: Monday & Thursday (9pm) MCQ Class: Wednesday (8pm)

Suri Sir

Theory Class: Wednesday & Saturday (9pm) MCQ Class: Monday (8pm)

Arvind Sir

Vedantu

MASTER TEACHER

Theory Class: Tuesday & Friday (9pm) MCQ Class: Thursday (8pm)

Vedantu JEE 2021 Program

<u>-FEATURES-</u>

- → 2500+ hours of LIVE online teaching
- → 45+ Teachers; from Top IITs and 10+ years experience
- → 750 Tests & 3000 Assignments for Practical Application
- → Instant Doubt Solving By Academic Mentors
- → Replay/Recording of Classes If You've Missed
- → Rank Booster Quizzes
- → Previous Paper Analysis

Boost your learning with Vedantu Pro

vdnt.in/YTJEE21 Enroll for FREE

> Vedantie Learn LIVE Online

Session Plan

Definition of Electric field

- Visualizing electric field
- Properties of Electric field lines
- Basic problems

Electric Field Of A Point Charge

Electric field at a point p is defined as the electric force experienced by unit positive charge placed at that point. In other words it is the force per unit charge.

VISUALIZING ELECTRIC FIELD

VISUALIZING ELECTRIC FIELD

PROPERTIES OF ELECTRIC FIELD

Hettigeliktisselitionse tetentettainy **Hettigeliktisselitionse tetentet**tainy **Hettigeliktisselitionse Hettigeliktisselition Hettigeliktisseliti** An electron enters an electric field with its velocity in the direction of the electric lines of force. Then :

- A the path of the electron will be a circle
- B the velocity of the electron will decrease
- C the path of the electron will be a parabola
- D the velocity of the electron will increase

Q. A charged particle of mass m and charge q is released from rest in an electric field of constant magnitude E. The kinetic energy of the particle after time t is :

A
$$\frac{2E^2t^2}{mq}$$
 B $\frac{E^2q^2t^2}{2m}$ **C** $\frac{Eq^2m}{2t^2}$ **D** $\frac{Eqm}{2t}$

Q. A particle of mass m and charge q is placed at rest in a uniform field E and the released. The KE attained by the particle after moving a distance y is :

AqE2CqEyBqE2yDq2Ey

Q. If a proton, a deuteron and an α -particle are kept in the same electric field :

- A proton and deuteron will have the same acceleration
- B Deuteron and α-particle will have the same acceleration
- **C** α-particle will have the maximum acceleration
- D proton will have the minimum acceleration

Q. A tiny 0.50 gm ball carries a charge of magnitude 10 μ C. It is suspended by a thread in a downward electric field of intensity 300 N/C. If the charge on the ball is positive, then the tension in the string is :

A
$$5 \times 10^{-3}$$
 NC 2×10^{-3} NB 8×10^{-3} NDzero

Q. Three point charges, each -q, are placed at the corners of an equilateral triangle. The magnitude of electric field at the centre will be : $\left(K = \frac{1}{4\pi\varepsilon_0}\right)$

Q. Two unlike charges of the same magnitude Q are placed at a distance d. The intensity of the electric field at the middle point in the line joining the two charges is :

A zero **B**
$$\frac{8Q}{4\pi\varepsilon_0 d^2}$$
 C $\frac{6Q}{4\pi\varepsilon_0 d^2}$ **D** $\frac{4Q}{4\pi\varepsilon_0 d^2}$

Q. Two point charges +8q and -2q are located at x = 0 and x = L respectively. The location of a point (from +8q) on the x-axis at which net electric field due to these point charges is zero, is :

A 8L B 4L C 2L D L/4

Q. The point charges Q and -2Q are placed at some distance apart. If the electric field at the location of Q is E, then the electric field at the location of -2Q will be :

A
$$-\frac{E}{2}$$
 C $-E$
B $-\frac{3E}{2}$ **D** $-2E$

https://vdnt.in/JEEVedantu

