

How AFL secures real-time player
tracking with encryption

Ralph Stone Srichakri Nadendla
Lead Architect Enterprise Solutions Architect
Media Applications Amazon Web Services

Telstra

Product success

Desirable

Feasible

Security and product adoption

I —
o)
P
— =t

World wide web Internet banking Interconnected
e-commerce everything

Factors for adoption at scale

A B
N O

Connectivity Mobile computing An unsung hero
(smart phones)

Factors for adoption at scale

i

ATS e S
AesZ O >

Connectivity Mobile computing Security
(smart phones)

Security a priority to reach adoption potential

Adoption

After-thought Front-of-mind Intrinsic

Priority for security in product/solution

AFL player tracker

AFL player tracker

~

-

GPS and
accelerometers

Sensors on
ground

Real-time
streaming

AFL player tracker

Location, speed,
distance

(>

Data and
video sync

G@D
@]
)
=D

O

Mobile
based

AFL player tracker

2 @

STATS INFO

Logo use approved by the AFL and Telstra

& TRACKER

RICHMOND

il §
A-

|

Stakeholders, perceptions and risks

T /ml g
AFL o~
PLAYERS o’(\@%

| ol |

AFL AFL Players Telstra Data App Dev Everyone's
Association partner partner lawyers

Logo use approved by the AFL and Telstra

Stakeholders, perceptions and risks

T C I g
Q=X A~
PLAYERS }> c}\@%

S | o
AFL AFL Players Telstra Data App Dev Everyone's
Association partner partner lawyers

Clubs

Logo use approved by the AFL and Telstra

Beyond security - trust and confidence

&) =C)

Cryptographers Stakeholders

Design considerations

A@

Encryption of
streaming data

][]

Key
management

Three hard problems

)

Sy
L] N

Naming Cache Cryptographic key
things invalidation management

The unexpected option for key management

|

©
I @29_ oo
”J ala

Software only AWS Key HSM
solutions Management Service

Hardware Security Module (HSM)

5 _
gol X =

Tamper-proof Crypto TRNG
hardware functions
£ T, N
S I =
Device management Trusted by Secure protocols

(FIPS 140-2) critical institutions and standards

Shared responsibility with CloudHSM

User Application
management integration

AN /

Responsibility

N

High
availability

HSM

Provisioning Maintenance

Backups

Concepts in CloudHSM 4

e Cluster h

« HSM CloudHSM HSM

 Backu |
P ~ h" Keys

| synchronised

Backup . h

» Higher throughput => Expand cluster CloudHSM HEM
« More active keys => New cluster

_ CloudHSM cluster
_ %

CloudHSM application integration

Service API SDKs: Application development
- Console e PKCS#11
. . AWS CLI/SDK m/_\“ . OpenssL
. Shows in AWS CloudTrail d \. Jce
AWS Command Line Interface Client daemon
\ * CloudHSM_mgmt_util - HSM * Used by key_mgmt_util and SDKs to
% \ administration - interact with cluster
¥ __\ + Key_mgmt_util — Convenient for Qoa « Handles load balancing

infrequent key operations Is aware of cluster configuration

changes

The PoC

7

|

L J

-

DA

Affordable Python and Key wrapping
PKCS11 (PKI and AES)

The solution

@ @D) —:

Cryptographic Random number for Developer tasks
functions in CloudHSM user challenges simplified

Data flow from the ground to cache

|2,

A
X 0 4
grAES [data] appAES [data]
. Crypto
Ingestion | m——) I h
gestio Server Cache
decrypt { grnAES [data] } l I encrypt-with-appAES [data]

e

CloudHSM

App gets an AES key per game

&
T & T K Crypt j c
|| = () €y PREEN B O
o server server Q
CloudHSM
request appAES key ‘ enerate GUID
} : } encrypt GUID
decrypt enc-GUID 4 with ‘
with (priv) (pub)
encrypt GUID } decrypt enc-
with {s]]s) GUID with ‘
(priv)
decrypt
appAES with encrypt
appRSA(priv) 4 appAES with
appRSA(pub)

store appAES
In memory

Getting data from cache

Request player tracker data

CDN | Cache

C— C—

appAES [data] appAES [data]

decrypt { appAES [data] }

-asy to use

load the aws cloudhsm library

Tib = pkcsll.1ib("/opt/cloudhsm/1ib/1ibcloudhsm_pkcsll_standard.so’)

fetch the hsm PIN, and open a session to the default token (cavium)
hsmPIN = getParameter("hsmPIN")
token = 1ib.get_token(token_Tlabel="cavium’)

session = token.open(user_pin=hsmPIN)

open the app’s RSA public key: we use this to wrap match AES keys

keyAppPublic = session.get_key(1d=17, object_class=0bjectClass.PUBLIC_KEY, label="pAppPrivate’)

ask the hsm to decrypt with the cKey then re-encrypt with the pKey

e = pEncryptKey.encrypt(cDecryptKey.decrypt(thisIterableData,
mechanism=Mechanism.AES_CBC, mechanism_param=cIV),
mechanism=Mechanism.AES_CBC, mechanism_param=pIV)

-asy to use

load the aws cloudhsm library
Tib = pkcsll.1ib('/opt/cloudhsm/11b/1ibcloudhsm_pkcsll_standard.so’)

fetch the hsm PIN, and open a session to the default token (cavium)

hsmPIN = getParameter("hsmPIN")
token = 1ib.get_token(token_label="cavium’)

session = token.open(user_pin=hsmPIN)
open the app’s RSA public key: we use this to wrap match AES keys

keyAppPublic = session.get_key(1d=17, object_class=0bjectClass.PUBLIC_KEY, label="pAppPrivate’)

ask the hsm to decrypt with the cKey then re-encrypt with the pKey

e = pEncryptKey.encrypt(cDecryptKey.decrypt(thisIterableData,

mechanism=Mechanism.AES_CBC, mechanism_param=cIV),
mechanism=Mechanism.AES_CBC, mechanism_param=pIV)

-asy to use

load the aws cloudhsm library

Tib = pkcsll.1ib('/opt/cloudhsm/11b/1ibcloudhsm_pkcsll_standard.so’)
fetch the hsm PIN, and open a session to the default token (cavium)
hsmPIN = getParameter("hsmPIN")

token = 1ib.get_token(token_label="cavium’)

session = token.open(user_pin=hsmPIN)
open the app’s RSA public key: we use this to wrap match AES keys

keyAppPublic = session.get_key(1d=17, object_class=0ObjectClass.PUBLIC_KEY,
label="pAppPrivate’)

ask the hsm to decrypt with the cKey then re-encrypt with the pKey

e = pEncryptKey.encrypt(cDecryptKey.decrypt(thisIterableData,

mechanism=Mechanism.AES_CBC, mechanism_param=cIV),
mechanism=Mechanism.AES_CBC, mechanism_param=pIV)

-asy to use

load the aws cloudhsm library

Tib = pkcsll.1ib('/opt/cloudhsm/11b/1ibcloudhsm_pkcsll_standard.so’)
fetch the hsm PIN, and open a session to the default token (cavium)
hsmPIN = getParameter("hsmPIN")

token = 1ib.get_token(token_label="cavium’)

session = token.open(user_pin=hsmPIN)

open the app’s RSA public key: we use this to wrap match AES keys
keyAppPublic = session.get_key(1d=17, object_class=0bjectClass.PUBLIC_KEY, label="pAppP srivate’)

ask the hsm to decrypt with the cKey then re-encrypt with the pKey

e = pEncryptKey.encrypt(
cDecryptKey.decrypt(thisIterableData,
mechanism=Mechanism.AES_CBC,
mechanism_param=cIV),
mechanism=Mechanism.AES_CBC, mechanism_param=pIV)

Player tracker during a game

Over 100,000 1 second 2 &= 6

Concurrent Liveness latency Scaling
sessions CloudHSMs

Managing AWS CloudHSM

S
=
Operational Scalability Support
ease from AWS

Positive stakenolder sentiment

Secure player performance data [Viability]
Protected using military grade means [Feasibility]
Novel fan engagement with live data [Desirability]
No compromise on risk or user-experience [Viability]

Scales seamlessly with viewership demand [Adaptability]

Additional considerations

{cl
R

i ’\f E:

PKCS#11 KMS vs Dev speed with
CloudHSM security

What we learnt

o

Need for trust AWS Security practice Faster to market

Choice enables flexibility and innovation

Identity and access

management

Amazon Cognito
AWS Directory Service
AWS IAM

AWS Resource Access
Manager

AWS Secrets Manager
AWS SSO

Detective
controls

AWS Security Hub
Amazon GuardDuty
Amazon Inspector
Amazon Macie

Amazon Detective

Infrastructure
protection

AWS Shield
AWS Shield Advanced

AWS Web Application
Firewall (WAF)

AWS Firewall Manager

Data
protection

AWS Key Management
Service (KMS)

AWS CloudHSM

AWS Certificate
Manager

Security documentation by category

Compute

Amazon EC2

AWS Batch

Amazon ECR

Amazon ECS

Amazon EKS

AWS Elastic Beanstalk
AWS Lambda

AWS Serverless
Application Repository

Management and
governance

Storage

DEYEDLEHED

Amazon Aurora
Amazon DocumentDB
Amazon DynamoDB
Amazon ElastiCache
Amazon Neptune
Amazon RDS

Amazon Redshift

AWS CloudTrail
Amazon CloudWatch
AWS Command Line
Interface (AWS CLI)
AWS Control Tower
AWS License Manager
AWS OpsWorks

AWS Organizations
AWS Service Catalog
Service Quotas

AWS Systems Manager
AWS Tools for
Powershell

AWS Well-Architected
Tool

AWS Chatbot

Amazon S3

AWS Backup

Amazon EFS

Amazon S3 Glacier
AWS Snowball

AWS Storage Gateway

Analytics

Machine Learning

https://docs.aws.amazon.com/security/

AmazonComprehend
AWSDeep Learning-AMI
AmazonElastic Inference
AmazonKendra
AmazonLex
AmazonPersonalize
AmazonRekognition
AmazonSageMaker
AmazonTranscribe
AmazonTranslate

Amazon Athena
AWS Data Exchange
Amazon Elasticsearch
Service

Amazon EMR

AWS Glue

Amazon Kinesis Data
Analytics for Java
Applications
Amazon Kinesis Data
Analytics for SQL
Applications
Amazon Kinesis Data
Firehose

Amazon Kinesis Data
Streams

Amazon Kinesis Video
Streams

Amazon MSK
Amazon QuickSight
Amazon Redshift

You can bake security and have speed too

Continuous compliance Security workshops

« Using AWS Management Tools « Guide to AWS encryption SDK
« Using AWS Security Hub « Securing EKS Cluster

Tha

Ralph Stone

Lead Architect
edia Applications

QWS SUMMIT
~— ONLINE

