

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How AFL secures real-time player
tracking with encryption

S E C 0 8

Ralph Stone

Lead Architect

Media Applications

Telstra

Srichakri Nadendla

Enterprise Solutions Architect

Amazon Web Services

Product success

Security and product adoption

Factors for adoption at scale

Factors for adoption at scale

Security a priority to reach adoption potential

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AFL player tracker

AFL player tracker

AFL player tracker

Logo use approved by the AFL and Telstra

Stakeholders, perceptions and risks

Logo use approved by the AFL and Telstra

Stakeholders, perceptions and risks

Clubs

Logo use approved by the AFL and Telstra

Beyond security - trust and confidence

Design considerations

Three hard problems

The unexpected option for key management

Hardware Security Module (HSM)

Shared responsibility with CloudHSM

Responsibility

Application
integration

Backups
HSM

maintenance

High
availability

Provisioning

User
management

Concepts in CloudHSM

• Cluster

• HSM

• Backup

• Higher throughput => Expand cluster

• More active keys => New cluster

CloudHSM HSM

CloudHSM HSM

Keys

synchronised

CloudHSM cluster

Backup

CloudHSM application integration

Service API
• Console

• AWS CLI/SDK

• Shows in AWS CloudTrail

AWS Command Line Interface
• CloudHSM_mgmt_util – HSM

administration

• Key_mgmt_util – Convenient for

infrequent key operations

SDKs: Application development
• PKCS#11

• OpenSSL

• JCE

Client daemon
• Used by key_mgmt_util and SDKs to

interact with cluster

• Handles load balancing

• Is aware of cluster configuration

changes

The PoC

The solution

Data flow from the ground to cache

Ingestion
Crypto
Server

Cache

appAES

appAES

App gets an AES key per game

Key
server

Crypto
server

appAES1

8

4

appRSA

2

appRSA

3
appRSA

telRSA

telRSA
5

telRSA

6

appAES 7
appAES

9 appAES

Getting data from cache

CDN Cache

appAES

Easy to use

load the aws cloudhsm library

lib = pkcs11.lib('/opt/cloudhsm/lib/libcloudhsm_pkcs11_standard.so’)

fetch the hsm PIN, and open a session to the default token (cavium)

hsmPIN = getParameter("hsmPIN")

token = lib.get_token(token_label='cavium’)

session = token.open(user_pin=hsmPIN)

open the app’s RSA public key: we use this to wrap match AES keys

keyAppPublic = session.get_key(id=17, object_class=ObjectClass.PUBLIC_KEY, label='pAppPrivate’)

ask the hsm to decrypt with the cKey then re-encrypt with the pKey

e = pEncryptKey.encrypt(cDecryptKey.decrypt(thisIterableData,
mechanism=Mechanism.AES_CBC, mechanism_param=cIV),

mechanism=Mechanism.AES_CBC, mechanism_param=pIV)

Easy to use

load the aws cloudhsm library

lib = pkcs11.lib('/opt/cloudhsm/lib/libcloudhsm_pkcs11_standard.so’)

fetch the hsm PIN, and open a session to the default token (cavium)

hsmPIN = getParameter("hsmPIN")

token = lib.get_token(token_label='cavium’)

session = token.open(user_pin=hsmPIN)

open the app’s RSA public key: we use this to wrap match AES keys

keyAppPublic = session.get_key(id=17, object_class=ObjectClass.PUBLIC_KEY, label='pAppPrivate’)

ask the hsm to decrypt with the cKey then re-encrypt with the pKey

e = pEncryptKey.encrypt(cDecryptKey.decrypt(thisIterableData,
mechanism=Mechanism.AES_CBC, mechanism_param=cIV),

mechanism=Mechanism.AES_CBC, mechanism_param=pIV)

Easy to use

load the aws cloudhsm library

lib = pkcs11.lib('/opt/cloudhsm/lib/libcloudhsm_pkcs11_standard.so’)

fetch the hsm PIN, and open a session to the default token (cavium)

hsmPIN = getParameter("hsmPIN")

token = lib.get_token(token_label='cavium’)

session = token.open(user_pin=hsmPIN)

open the app’s RSA public key: we use this to wrap match AES keys

keyAppPublic = session.get_key(id=17, object_class=ObjectClass.PUBLIC_KEY,
label='pAppPrivate’)

ask the hsm to decrypt with the cKey then re-encrypt with the pKey

e = pEncryptKey.encrypt(cDecryptKey.decrypt(thisIterableData,
mechanism=Mechanism.AES_CBC, mechanism_param=cIV),

mechanism=Mechanism.AES_CBC, mechanism_param=pIV)

Easy to use

load the aws cloudhsm library

lib = pkcs11.lib('/opt/cloudhsm/lib/libcloudhsm_pkcs11_standard.so’)

fetch the hsm PIN, and open a session to the default token (cavium)

hsmPIN = getParameter("hsmPIN")

token = lib.get_token(token_label='cavium’)

session = token.open(user_pin=hsmPIN)

open the app’s RSA public key: we use this to wrap match AES keys

keyAppPublic = session.get_key(id=17, object_class=ObjectClass.PUBLIC_KEY, label='pAppP srivate’)

ask the hsm to decrypt with the cKey then re-encrypt with the pKey

e = pEncryptKey.encrypt(
cDecryptKey.decrypt(thisIterableData,

mechanism=Mechanism.AES_CBC,
mechanism_param=cIV),

mechanism=Mechanism.AES_CBC, mechanism_param=pIV)

Player tracker during a game

Managing AWS CloudHSM

Positive stakeholder sentiment

Additional considerations

What we learnt

Choice enables flexibility and innovation

Identity and access
management

Detective
controls

Infrastructure
protection

Data
protection

Security documentation by category

https://docs.aws.amazon.com/security/

Compute Management and
governance

Databases

Storage Analytics

Machine Learning

You can bake security and have speed too

Continuous compliance Security workshops

Thank you!

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Ralph Stone

Lead Architect
Media Applications
Telstra

Srichakri Nadendla

Enterprise Solutions Architect
Amazon Web Services

