
Geoprocessing for
Vectors and Rasters



Putting all the pieces together for the fun stu�

2 / 187



Meaningfully manipulating your geospatial
data
A three-part section:

Single vector layers

Multiple vector layers

Raster layers

3 / 187



There are several dozen functions in each
category

4 / 187



The plan
Demonstrate some of the most important functions
using a real-world, mini-analysis

Provide a quick demonstration of important functions
that are not included in the mini-analysis

5 / 187



Our mini-analysis

6 / 187



What in�uences air quality in New York City?

7 / 187



A common air quality modeling approach
Collect measurements at air monitors

Compute road density, landuse and other variables
near each monitor

Look at the relationship between concentrations and
road density etc.

8 / 187



Start with the air quality monitors

Image source

9 / 187

https://nyc-ehs.net/besp-report/web/nyccas


New York City has one of the largest urban air
monitoring networks in the world
Data from the NYC Dept. of Health, New York City
Community Air Survey (NYCCAS).

More detail can be found here.

10 / 187

https://www1.nyc.gov/site/doh/data/data-sets/air-quality-nyc-community-air-survey.page


Take a look at our air quality data
PM2.5 refers to particles in the air (soot)

monitors <- read_sf("monitors.gpkg")

library(dplyr)
glimpse(monitors)

## Observations: 64
## Variables: 4
## $ site_id     <dbl> 228, 952, 2269, 2496, 2596, 2818…
## $ reference   <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ pm25_annual <dbl> 6.473097, 6.591441, 6.107921, 5.…
## $ geom        <POINT [US_survey_foot]> POINT (918300…

11 / 187



Map the air quality data
tm_shape(monitors) + 
  tm_dots("pm25_annual", size = 0.5)

12 / 187



Let's add a little context by mapping the
counties with the monitors

13 / 187



Read the county/borough data directly from
nyc.gov
counties <- read_sf("http://bit.ly/39MxcnC")

Data is here.

14 / 187

https://www1.nyc.gov/site/planning/data-maps/open-data/districts-download-metadata.page


Here are our counties (also referred to as
"boroughs")
tm_shape(counties) + tm_polygons() + 
  tm_text("BoroName", size = 1)

15 / 187



Map the air quality data and the counties
together
tm_shape(counties) + tm_borders() + 
  tm_shape(monitors) + tm_dots("pm25_annual", size = 0.5)

16 / 187



By the way, that last map worked but why
doesn't this?
plot(st_geometry(counties))
plot(st_geometry(monitors), add = TRUE)



CRS mismatch!
st_crs(monitors)

## Coordinate Reference System:
##   No EPSG code
##   proj4string: "+proj=lcc +lat_1=41.03333333333333 +lat_2=40.6666

st_crs(counties)

## Coordinate Reference System:
##   EPSG: 4326 
##   proj4string: "+proj=longlat +datum=WGS84 +no_defs"

18 / 187



We will use a consistent, projected CRS
Long Island State Plane, EPSG 2908

counties <- counties %>% 
  st_transform(crs = st_crs(monitors))

19 / 187



Try the map again
plot(st_geometry(counties))
plot(st_geometry(monitors), add = TRUE)

20 / 187



Introducing our candidate "predictor" variables

21 / 187



Road layer lines
roads <- read_sf("roads.gpkg")

Data from here.

22 / 187

https://www.fhwa.dot.gov/policyinformation/hpms/shapefiles.cfm


Road map
tm_shape(counties) + tm_borders(col = "red") +
  tm_shape(roads) + tm_lines(col = "grey")

23 / 187



Census data (population polygons)
population <- read_sf("population.shp")

Data collected with {tidycensus}.

24 / 187



Census data map
tm_shape(population) + 
  tm_polygons("population", border.col = "grey", lwd = 0.25)
  tm_shape(counties, is.master = TRUE) + 
  tm_borders(col = "red")

25 / 187



Land use raster
landuse <- raster("landuse.tif")

Data collected using {FedData}.

26 / 187



Land use raster map
plot(landuse)

27 / 187



Canopy raster
canopy <- raster("canopy.tif")

Data collected using {FedData}.

28 / 187



Canopy raster map
plot(canopy)

29 / 187



Goal: characterize areas around monitors
Compute road density

Compute distance to the nearest road

Compute population

Compute the amount of "high intensity" developed
land

Compute average tree canopy

30 / 187



Single-layer geoprocessing for vectors

31 / 187



Examples of available functions
st_union()
st_centroid()
st_convex_hull()
st_buffer()
st_cast()
st_simplify()

32 / 187



Favorites that are not part of our mini-
analysis...

33 / 187



Get the centroids with st_centroid()
cent <- st_centroid(counties)

tm_shape(counties) + tm_borders() +
  tm_shape(cent) + tm_dots(size = 0.5, col = "red")

34 / 187



Put a "hull" around geometries with
st_convex_hull()
hull <- st_convex_hull(counties)

tm_shape(counties) + tm_polygons() + tm_shape(hull) + 
  tm_polygons("BoroName", alpha = 0.3) + tm_layout(frame = F



Combine multiple geometries into one
counties_as_one <- st_union(counties)

counties_as_one

## Geometry set for 1 feature 
## geometry type:  MULTIPOLYGON
## dimension:      XY
## bbox:           xmin: 913174.7 ymin: 120124.9 xmax: 1067382 ymax: 
## epsg (SRID):    NA
## proj4string:    +proj=lcc +lat_1=41.03333333333333 +lat_2=40.6666

36 / 187



Reapply hull
hull <- st_convex_hull(counties_as_one)

tm_shape(counties) + tm_polygons() + tm_shape(hull) + 
  tm_borders(col = "orange") + tm_layout(frame = FALSE)

37 / 187



For the analysis of air quality the function we
need is st_buffer()

38 / 187



Create a 500 meter bu�er around the monitors
Then compute, for example, road density within the
buffer

39 / 187



The basic syntax is
st_buffer(geo, distance)

40 / 187



The distance units come from the geography
CRS

41 / 187



In our case this is feet
st_crs(monitors)

## proj4string: "+proj=lcc +lat_1=41.03333333333333
+lat_2=40.66666666666666 +lat_0=40.16666666666666
+lon_0=-74 +x_0=300000 +y_0=0 +ellps=GRS80
+towgs84=0,0,0,0,0,0,0 +units=us-ft +no_defs"

You can access this directly with:
sf:::crs_parameters(st_crs(schools))$ud_unit

42 / 187



To get meters from feet multiple by 3.28
monitor_buffers <- st_buffer(monitors, 500 * 3.28)

43 / 187



Our monitor bu�ers
tm_shape(counties) + tm_borders() +
  tm_shape(monitor_buffers) + tm_polygons(col = "red") + 
  tm_shape(monitors) + tm_dots(size = 0.1, col = "yellow")

44 / 187



By the way, in terms of naming objects for this
section
Final tables will be prefixed with monitor_ (e.g.,
monitor_roads, monitor_canopy etc)

45 / 187



open_exercise(7) and do activities 1-3 only

46 / 187



Geoprocessing with multiple vector layers

47 / 187



Tons of great functions for geoprocessing with
two layers
st_join()
st_distance()
st_nearest_feature()
st_nearest_points()
st_combine()
st_intersection()
st_union()
st_crop()
st_intersects()
st_contains()
st_touches()

48 / 187



Some of these functions return a geometry
st_join()
st_nearest_points()
st_combine()
st_intersection()
st_union()
st_crop()

49 / 187



And some return an object describing
relationships
st_intersects()
st_contains()
st_touches()
st_crosses()
st_distance()
st_nearest_feature()

50 / 187



Examples of functions that return a geometry

51 / 187



For illustration, start with two rectangles
plot(polys, border = "grey")
plot(st_geometry(poly1), add = TRUE, border = "red")
plot(st_geometry(poly2), add = TRUE, border = "blue")

52 / 187



Combine multiple geometries into one,
dissolved, geometry with st_union()
union <- st_union(poly1, poly2)

plot(polys, border = "grey")
plot(st_geometry(union), add = TRUE, col = "red", lwd = 2)

53 / 187



Compute the intersection between geometries
with st_intersection()
intersection <- st_intersection(poly1, poly2)

plot(polys, border = "grey")
plot(st_geometry(intersection), add = TRUE, col = "red")

54 / 187



Examples of functions that return an object
describing relationships
st_intersects()
st_contains()
st_touches()
st_crosses()
st_distance()
st_nearest_feature()

55 / 187



You can �nd visual descriptions of the
relationships...
Here or here.

http://postgis.net/workshops/postgis-intro/spatial_relationships.html
https://cran.r-project.org/web/packages/sf/vignettes/sf3.html


For our examples, we'll use two objects
An {sf} object with four polygons (poly)

An {sf} object with one line (line)

57 / 187



Most of these functions can return either a ...
A sparse index list or

A dense logical matrix

58 / 187



These are called "binary logical operations"
st_intersects()
st_touches()
st_crosses()
st_within()
st_contains()
st_overlaps()
# And more!

59 / 187



Back to our example geometries

60 / 187



Test if features cross with st_crosses()
st_crosses(line, poly)

## Sparse geometry binary predicate list of length 1, where the pred
##  1: 1, 2, 4

st_crosses(poly, line)

## Sparse geometry binary predicate list of length 4, where the pred
##  1: 1
##  2: 1
##  3: (empty)
##  4: 1

61 / 187



Test if the features intersect with
st_intersects()

62 / 187



By the way, note...
st_intersection() returns a geometry

st_intersects() returns an object of relationships

63 / 187



Test if the features intersect with
st_intersects()
st_intersects(line, poly)

## Sparse geometry binary predicate list of length 1, where the pred
##  1: 1, 2, 4

st_intersects(poly, line)

## Sparse geometry binary predicate list of length 4, where the pred
##  1: 1
##  2: 1
##  3: (empty)
##  4: 1

64 / 187



Let's make this a little more interesting with
the roads and population
road_pop_index <- st_intersects(roads, population)

65 / 187



The default for these functions is to return a
sparse list
road_pop_index

## Sparse geometry binary predicate list of length 21464, where the 
## first 10 elements:
##  1: 6454, 6457, 6458, 6467, 6468
##  2: 1526
##  3: 968
##  4: 1999
##  5: 3195
##  6: 1526
##  7: 6368
##  8: 1941, 1999
##  9: 4923
##  10: 3095, 3222

66 / 187



The list length is the same as the number of
features (in the �rst object)
nrow(roads)

## [1] 21464

length(road_pop_index)

## [1] 21464

67 / 187



You can extract pieces like an R list
# Results for polygon 1
road_pop_index[[1]]

## [1] 6454 6457 6458 6467 6468

# Results for polygon 3
road_pop_index[[3]]

## [1] 968

68 / 187



Use lengths() to count how many
intersections in this case
Zero means no intersection

69 / 187



For example...
number_of_intersections <- lengths(road_pop_index)

head(number_of_intersections)

## [1] 5 1 1 1 1 1

70 / 187



Are there roads that don't intersect the census
polygons?
roads_no_intersect <- filter(roads, 
                             number_of_intersections == 0)

nrow(roads_no_intersect)

## [1] 38

71 / 187



Where are these roads that don't intersect?

72 / 187



If you prefer, you can return dense logical
matrix from binary logical operations
mat <- st_intersects(poly, line, sparse = FALSE)
mat

##       [,1]
## [1,]  TRUE
## [2,]  TRUE
## [3,] FALSE
## [4,]  TRUE

73 / 187



Back to our mini-analysis

74 / 187



How might we compute road density in the
monitor bu�ers?

75 / 187



Compute the intersection between the lines
and polygons
roads_in_buffer <- st_intersection(monitor_buffers, roads)

76 / 187



Map of the roads in the bu�ers
Zoomed in to Manhattan

77 / 187



The resulting geometry is lines and includes
attributes from both tables
roads_in_buffer[,1:8] %>% 
  glimpse()

## Observations: 2,316
## Variables: 9
## $ site_id     <dbl> 11389, 2496, 6689, 2496, 11389, …
## $ reference   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ pm25_annual <dbl> 9.024395, 5.873043, 7.525750, 5.…
## $ Year_Recor  <dbl> 2017, 2017, 2017, 2017, 2017, 20…
## $ State_Code  <dbl> 36, 36, 36, 36, 36, 36, 36, 36, …
## $ Route_ID    <chr> "300258011", "257268011", "25625…
## $ Begin_Poin  <dbl> 3.58, 3.10, 1.40, 3.48, 3.60, 1.…
## $ End_Point   <dbl> 3.60, 3.20, 1.50, 3.50, 3.70, 1.…
## $ geom        <LINESTRING [US_survey_foot]> LINESTRI…

78 / 187



So the �nal step would be to add the road
length and sum by site ID
roads_in_buffer <- roads_in_buffer %>% 
  mutate(length = st_length(geom))

monitor_roads <- roads_in_buffer %>% 
  group_by(site_id) %>% 
  summarise(total_roads = sum(length)) %>% 
  st_drop_geometry()

79 / 187



Road length/density in the bu�ers
glimpse(monitor_roads)

## Observations: 64
## Variables: 2
## $ site_id     <dbl> 228, 952, 2269, 2496, 2596, 2818…
## $ total_roads [US_survey_foot] 2772.254 [US_survey_f…

80 / 187



Compute distance to the nearest road

81 / 187



We could use st_distance()
dist <- st_distance(monitors, roads)

82 / 187



But st_distance() computes a matrix of
distances from all features to all features
dim(dist)

## [1]    64 21464

83 / 187



For speedier results you can:
Find the nearest road first

Then compute the distance to just this road

84 / 187



First use st_nearest_feature()
feat <- st_nearest_feature(monitors, roads)

# Index of nearest feature
feat

##  [1]  6041 13014  9259 17955 11994  4240 12642 18540 20322  3584 
## [12]  9806 13617  8865  7471  2585 10303 12548  3242 16978 19174 
## [23]  7501  7350  3244 15063 19556  3914 17863  5847  8783 18704  
## [34] 18431  1085 10104  7640  5472 21371  4829    81  6201  5720 
## [45] 18125 14457 13931 14542 15712  2354  2444  7390 17884 15208  
## [56] 13927 12453  6955  2316 10638  5805  2340  7142 12690

85 / 187



And then compute the distance from each
monitor to its nearest road
Use the by_element = TRUE argument so that the distance
is only measured from the 1st monitor to the 1st road, 2nd
to 2nd and so on.

min_dist <- st_distance(monitors, roads[feat,], 
                        by_element = TRUE)

86 / 187



Create the minimum distance to road table
monitor_road_mindist <- monitors %>% 
  mutate(road_mindist = min_dist) %>% 
  select(-pm25_annual, -reference) %>% 
  st_drop_geometry()

head(monitor_road_mindist)

## # A tibble: 6 x 2
##   site_id     road_mindist
##     <dbl> [US_survey_foot]
## 1     228        838.19670
## 2     952         16.11883
## 3    2269         96.42880
## 4    2496        125.59963
## 5    2596        252.24296
## 6    2818       1250.33448

87 / 187



How would we compute total population?

88 / 187



Remember that our census areas are polygons
st_geometry(population) %>% 
  plot()

89 / 187



Easiest solution would be to simply use the
population from the underlying census polygon

90 / 187



To do this you can use a "spatial" join with
st_join()
st_join(monitors, population) %>% 
  glimpse()

## Observations: 64
## Variables: 9
## $ site_id     <dbl> 228, 952, 2269, 2496, 2596, 2818…
## $ reference   <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ pm25_annual <dbl> 6.473097, 6.591441, 6.107921, 5.…
## $ geom        <POINT [US_survey_foot]> POINT (918300…
## $ GEOID       <chr> "360850244013", "360850170083", …
## $ NAME        <chr> "Block Group 3, Census Tract 244…
## $ variable    <chr> "B01001_001", "B01001_001", "B01…
## $ population  <dbl> 2816, 2899, 817, 1733, 1194, 200…
## $ moe         <dbl> 544, 587, 135, 326, 311, 243, 31…

91 / 187



The default for st_join() is to join if they
intersect

92 / 187



Scienti�cally there is a problem with this
approach, though

93 / 187



Census areas vary in size due to population
Lower population density in an area results in a larger
census area

This means that if you use only the underlying polygon
the "population" will be essentially the same wherever
you are!

94 / 187



A better approach is to use the bu�ers
Sum the population from all census geography in the
buffer

But do it proportionally by area. In other words, if 10%
of a polygon is in the buffer then include 10% of the
population

95 / 187



Add the full area as a variable to census
polygons
population <- population %>% 
  mutate(full_area = st_area(geom))

96 / 187



Do the intersection
population_buffer <- st_intersection(monitor_buffers, 
                                     population)

97 / 187



The polygons are clipped to the bu�ers

98 / 187



Add the new area (since some areas get
clipped)
population_buffer <- population_buffer %>% 
  mutate(part_area = st_area(geom))

99 / 187



Compute the area proportion and proportional
population
population_buffer <- population_buffer %>% 
  mutate(
    prop_area = part_area/full_area,
    buffer_pop = population * prop_area
  )

100 / 187



Sum the population by bu�er
monitor_population <- population_buffer %>% 
  group_by(site_id) %>% 
  summarise(population = sum(buffer_pop)) %>% 
  st_drop_geometry()

101 / 187



open_exercise(7) and do activities 4-10 only

102 / 187



Geoprocessing with rasters

103 / 187



Lots of great functions for rasters as well!
reclassify()
extract()
calc()
crop()
mask()
trim()
overlay()
clump()
terrain()
zonal()
focal()
layerize()
aggregate()

104 / 187



Nearly all of these functions return a raster

105 / 187



For our analysis we'll introduce layerize()
and extract(), mask(), crop() and
calc()

106 / 187



First, a few favorite functions that are not part
of the analysis

107 / 187



For "bonus" functions we will use elevation
data
elevation <- raster("elevation.tif")

108 / 187



Plot elevation
plot(elevation)

109 / 187



Bonus functions: Raster math

110 / 187



There are three approaches you can use to
recalculate values

111 / 187



For simple raster arithmetic
For example, convert meters to feet by multiplying by 3.28

elevation_feet <- elevation * 3.28

112 / 187



Plot of raster in feet
plot(elevation_feet)

113 / 187



To apply a function calc()
Can be faster with complex formulas and large datasets

f <- function(x) {x[x>75 & x<125] <- 1000; return(x)}

elevation_odd <- calc(elevation, fun = f)

114 / 187



Plot odd raster
plot(elevation_odd)

115 / 187



For raster calculations with multiple rasters
use overlay()
For simplicity, I'm cheating and using the same raster
twice

f <- function(x,y){return(x * y)}

elevation_squared <- overlay(elevation, elevation, fun = f)

116 / 187



Plot the overlay result
plot(elevation_squared)

117 / 187



All three approaches can also be applied to a
RasterBrick or RasterStack

118 / 187



Bonus functions: aggregate() to reduce
resolution

119 / 187



Elevation layer has nearly 5 million cells
ncell(elevation)%>%
  format(big.mark   = ",") # format the number

## [1] "4,952,808"

# Cells are not square because the raster was projected
res(elevation) # meters

## [1] 22.7 30.3

120 / 187



Reduce resolution by factor of 10
lowres <- aggregate(elevation, fact = 10, fun = mean)

121 / 187



Lower resolution canopy is less than 50
thousand cells
ncell(lowres) %>%
  format(big.mark   = ",")

## [1] "49,784"

res(lowres)

## [1] 227 303

122 / 187



Lower resolution elevation
plot(lowres)

123 / 187



Note there is also a disaggregate()
function
r <- raster(nrow = 2, ncol = 2, vals = rnorm(4))
ncell(r)

## [1] 4

disaggregate(r, fact = 10) %>% 
  ncell()

## [1] 400

124 / 187



For our mini-analysis we have two raster-based
variables to create

Compute the amount of high-intensity, developed land
within the buffers

Compute the average tree canopy within the buffers

125 / 187



Start with computing the proportion of high
intensity, developed land within the bu�ers

126 / 187



Here is the land use layer
plot(landuse)

127 / 187



Note that it is a categorical raster

128 / 187



The category de�nitions can be viewed using
levels()
This is true because the original raster came with a
metadata file (suffix .tfw)

129 / 187



Take a look at the levels limited to categories
with at least one cell
We're only interested in cells with a value of 24

levels(landuse)[[1]] %>% 
  filter(Count != 0) %>% 
  select(Value, Count, NLCD.2011.Land.Cover.Class) %>% 
  slice(1:10)

##    Value      Count  NLCD.2011.Land.Cover.Class
## 1      0 7854240512                Unclassified
## 2     11  469012527                  Open Water
## 3     12    1599206          Perennial Snow/Ice
## 4     21  292251633       Developed, Open Space
## 5     22  131633826    Developed, Low Intensity
## 6     23   59456652 Developed, Medium Intensity
## 7     24   21426522   Developed, High Intensity
## 8     31  110507264                 Barren Land
## 9     41  973617734            Deciduous Forest
## 10    42 1037912310            Evergreen Forest

130 / 187



In each bu�er we will want to count the number
of grid cells with a value/code of 24

131 / 187



Perhaps easiest to create a layer with 1 for
developed and 0 otherwise

132 / 187



There are a couple of options
layerize()

Our friend from before, calc()

133 / 187



layerize() is a magical function

134 / 187



Create a binary layer for each category with
layerize()
Creates a RasterBrick

135 / 187



Apply layerize()
landuse_layers <- layerize(landuse)

136 / 187



The result is a raster brick with 16 layers
class(landuse_layers)

## [1] "RasterBrick"
## attr(,"package")
## [1] "raster"

nlayers(landuse_layers)

## [1] 16

137 / 187



The names of the layers start with an "X"
followed by the value
names(landuse_layers)

##  [1] "X0"  "X11" "X21" "X22" "X23" "X24" "X31" "X41" "X42" "X43" 
## [12] "X71" "X81" "X82" "X90" "X95"

138 / 187



We can pull out the layer of interest with
subset()
developed <- subset(landuse_layers, "X24")

139 / 187



A plot of high-intensity, developed grid cells
plot(developed)

140 / 187



layerize() works great but is more
computation than needed

141 / 187



There is a simpler way to assign values of 24 to
1 and others to 0

142 / 187



Use calc()
# Our function
f <- function(x){
  x[x != 24] <- 0
  x[x == 24] <- 1
  x
}

developed <- calc(landuse, f)

143 / 187



A plot of high-intensity, developed grid cells
plot(developed)

144 / 187



We have the raster layer we need...
Now we need to sum the cells by buffer

145 / 187



If you have zones as vectors you can use
extract()

146 / 187



extract() pulls values from the raster at
points or within polygons

147 / 187



And extract() can use {sf} objects!
Though the documentation does not mention this 🤔

148 / 187



extract() is particularly easy to apply if
you only need the cell value under each point
extract(developed, monitors)

##  [1] 0 0 0 1 0 0 0 1 1 0 1 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 1 1 
## [36] 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0

149 / 187



But we want the total developed land in the
bu�ers (polygons)

150 / 187



With polygons extract() returns all values
in a list by default
raw_vals <- extract(developed, monitor_buffers)

raw_vals[[1]][1:5]

## [1] 0 0 0 0 1

raw_vals[[20]][1:5]

## [1] 1 1 1 1 1

151 / 187



You could sum the values yourself or...

152 / 187



You can provide a summary function to
extract()
developed_count  <- extract(
  developed, 
  monitor_buffers, 
  fun = sum
)

153 / 187



And here is our �nal result
head(developed_count)

##      [,1]
## [1,]   31
## [2,]   17
## [3,]   47
## [4,]  422
## [5,]  386
## [6,]   84

154 / 187



Add the result to the original bu�er �le
monitor_developed <- monitor_buffers %>% 
  mutate(developed_count = c(developed_count)) %>% 
  select(site_id, developed_count) %>% 
  st_drop_geometry()

155 / 187



Final computation in our mini-analysis!

156 / 187



Average tree canopy in the bu�er

157 / 187



Tree canopy is a numeric raster
canopy <- raster("canopy.tif")

158 / 187



Values are percent of tree canopy
plot(canopy)

159 / 187



Before using extract() to grab the values

160 / 187



The raster extent is bigger than we need

161 / 187



Let's crop and mask so we keep only raster
values in the counties

162 / 187



crop() will clip the raster to the (square)
extent of another layer

163 / 187



crop() the canopy layer to the counties
cropped <- crop(canopy, counties)

164 / 187



Plot the cropped raster

165 / 187



mask() will assign NA to cells outside the
polygon layer

166 / 187



mask() the canopy layer with the counties
masked <- mask(cropped, counties)

167 / 187



Plot the masked (and cropped) layer

168 / 187



Extract the values for the bu�ers using a
mean() function
canopy_vals <- extract(masked, monitor_buffers, 
                       fun = mean, na.rm=TRUE)

169 / 187



Create the canopy table
monitors_canopy <- monitor_buffers %>% 
  mutate(canopy_avg = c(canopy_vals)) %>% 
  select(site_id, canopy_avg) %>% 
  st_drop_geometry()

170 / 187



Results of our mini-analysis

171 / 187



We have �ve result �les
We calculated road density by intersecting the buffers
with the roads with st_intersection() and
`st_length()

We calculated minimum distance to the nearest road
with st_nearest_feature() and st_distance()

We calculated population in the buffer by using
st_intersection() (poly to poly) and st_area()

We used calc() and extract() to calculated developed
land in the buffer from a raster

We used extract() (with some crop() and mask()) to
compute canopy in the raster

172 / 187



We can assemble the pieces together
monitor_results <- monitors %>% 
  inner_join(monitor_roads, by = "site_id") %>% 
  inner_join(monitor_road_mindist, by = "site_id") %>% 
  inner_join(monitor_population, by = "site_id") %>% 
  inner_join(monitor_developed, by = "site_id") %>% 
  inner_join(monitors_canopy, by = "site_id")

173 / 187



Map all our variables in one window
tm_shape(counties) + tm_polygons()+
tm_shape(monitor_results) + 
  tm_dots(c("pm25_annual", "total_roads", 
            "road_mindist", "population", 
            "developed_count", "canopy_avg"), size = 0.5)

174 / 187



Map all our variables in one window

175 / 187



Which variables are most strongly correlated
with air pollution?

176 / 187



Look at correlation using the {base} function
cor()

177 / 187



Tiny bit of prep
# Prepare the data
results <- monitor_results %>% 
  select(pm25_annual, total_roads, road_mindist, 
         population, developed_count, canopy_avg) %>% 
  st_drop_geometry()

178 / 187



Look at correlation using the {base} function
cor()
cor(results) %>% round(2)

179 / 187



Before creating a few scatter plots look at the
data once more
glimpse(monitor_results)

## Observations: 64
## Variables: 9
## $ site_id         <dbl> 228, 952, 2269, 2496, 2596, …
## $ reference       <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0…
## $ pm25_annual     <dbl> 6.473097, 6.591441, 6.107921…
## $ geom            <POINT [US_survey_foot]> POINT (91…
## $ total_roads     [US_survey_foot] 2772.254 [US_surv…
## $ road_mindist    [US_survey_foot] 838.19670 [US_sur…
## $ population      [1] 2276.8915 [1], 3464.4637 [1], …
## $ developed_count <dbl> 31, 17, 47, 422, 386, 84, 77…
## $ canopy_avg      <dbl> 16.88302752, 18.76931949, 34…

180 / 187



Since correlation is strongest with
total_roads let's plot
library(ggplot2)
# Error, not happy with units
ggplot(monitor_results, aes(total_roads, pm25_annual)) + 
  geom_point() + geom_smooth(method = "lm")

## Error in Ops.units(x, range[1]): both operands of the expression 



Shucks, need to remove units, do you
remember how to do this?
monitor_results <- monitor_results %>% 
  mutate(total_roads = units::drop_units(total_roads))

182 / 187



Our scatter plot of roads within 500 meters
against air pollution
ggplot(monitor_results, aes(total_roads, pm25_annual)) + 
  geom_point() + geom_smooth(method = "lm")

183 / 187



Amount of high-intensity developed land
within 500 meters against air pollution
ggplot(monitor_results, aes(developed_count, pm25_annual)) +
  geom_point() + geom_smooth(method = "lm")

184 / 187



Summary of air quality results
Air quality strongly related to road density and
developed land use

Air quality negatively related to minimum distance to
the nearest road and tree canopy

Air quality modestly related to total population in the
buffer

185 / 187



Please provide feedback before �nishing the
exercise
http://bit.ly/zrsaSpatialWorkshopFeedback

186 / 187

http://bit.ly/zrsaSpatialWorkshopFeedback


open_exercise(7) and �nish

187 / 187


