Getting Geospatial Data
Into R

Ways to get spatial data into R

e Load external spatial files

e Load or fetch data with specialized R packages

2 /69

In this section I'll be showing some code [l
cover in more detail later

3/69

Reading in existing data

4/69

What function you use depends on the type of
data

e Read vector data with the {sf} package

e Read raster data with the {raster} package

5/69

Reading vector data

6/69

For vector data use read_sf () from {sf}

7 /69

You can also use st_read () from {sf} but
read_sf () ismore tidy’

e stringsAsFactors = FALSE
e quiet = TRUE
e as_tibble = TRUE

8 /69

read_sT () to read many different file types

e Shapefiles
e Geopackages
e Geojson

e Even databases!

9/69

This makes things so much easier!

HOORAY

10/69

A little more detail on the most common vector
file types

11/69

Shapefiles are the most common spatial files

12 /69

Shapefiles have been around a long time!

13/69

Shapefiles can be unpleasant to work with

e Columns can only be 10 or fewer characters

e Inconveniently a single shapefile is represented by
multiple files

14 /69

This is one “shapefile’

boroughs.dbf

A shapefile can also have several other associated files

15/69

Time to move away from shapefiles

X N @) Shapefile must die! X L

C 1 (@ Not Secure | switchfromshapefile.org

Zross WHOequity / Rep... zevross-spatial [® Trello M Harvest @ Calendar

Switch from Shapefile

ESRI Shapefile is a file format for storing geospatial vector data. |
and is still the most commonly used vector data exchange forma

While Shapefiles have enabled many successful activities over the years, tt
complicate software development and reduce efficiency.

We, members of the geospatial IT industry, believe that it is time to stop usi
format and to replace them with a format that takes advantage of the huge
was introduced.

Read more:

e The good side
e Shapefile is a bad format
e Shapefile alternatives

16 /69

Geopackages are rapidly gaining acceptance

e Open format
e Just one file, technically they are a SQLite container

o Can store multiple layers in one file

17 /69

Geojson, spatial data for the web

geojson is json (javascript) with geographic attributes

Files can be a little larger

Extension is usually .geojson (sometimes .json)

Can only be latitude/longitude

18 /69

One point in geojson

{

"type": "FeatureCollection",
"crs": {
lltypell: llnamell’
"properties": {
"name": "urn:ogc:def:crs:0GC:1.3:CRS84"
¥
¥,

"features": [{
"type'": "Feature",
"properties": {
"location": "Gimme! Coffee"
T
"geometry'": {
"type": "Point",
"coordinates": [-73.995001, 40.722401]

3]

19/69

gimme! coffee, one of my favorites

Gimme
- Patita as

20/69

A note on topojson, another format for the web

e Topojson is similar to geojson but stores geometries
more efficiently

e For example, a border between two countries would be
stored just once.

e read_sf() can also read this

21/69

Let's see read_sf () inaction

22 /69

Simple example of read_sf ()

library(sf)
boroughs <- read_sf("boroughs.shp")

23 /69

read_sf () has a consistent syntax

boroughs <- read_sf("boroughs.shp")
boroughs <- read_sf("boroughs.geojson")
boroughs <- read_sf("boroughs.gpkg")

24 /69

The result will be a {sf} table ... more details

|later

glimpse(boroughs)

##
##
##
##
##
##
##
##
##

Observations:

Variables: 7

wvununum-umnun

BoroCode
BoroName
Shape_Leng
Shape_Area
diso
AreaSqgMile
geom

5

<int>
<chr>
<dbl>
<dbl>
<int>
<dbl>

1, 2, 5, 3, 4

"Manhattan", "The Bronx", '"Staten..
339736.6, 397460.6, 318700.5, 576..
635147797, 1182399343, 1630762350..

1, 1, 1, 1, 1

22.78279, 42.41274, 58.49555, 71...
<MULTIPOLYGON [US_survey_foot]> MULTIPO..

25/69

You can also read from a URL directly

Topojson
usa <- read_sf("http://bit.ly/2NhznGt")

Plotting discussed later
st_geometry(usa) %>% plot()

P

Na

26 /69

A note on maRing non-spatial data spatial

e Addresses
e Coordinates

e Place names

27169

If you have addresses, you need to "geocode” to
get coordinates

Uses Google Maps
ggmap: :geocode("Hilton San Francisco Union Square")

Uses Open Street Map
tmaptools: :geocode_OSM("Hilton San Francisco Union Square",
as.sf = %>%
glimpse()

Observations: 1
Variables: 8

$ query <chr> "Hilton San Francisco Union Square"
S lat <dbl> 37.78573

$ lon <dbl> -122.4104

$ lat_min <dbl> 37.78519

$ lat_max <dbl> 37.78612

S lon_min <dbl> -122.4112

S lon_max <dbl> -122.4096

$ geometry <POINT [°]> POINT (-122.4104 37.78573)

28 /69

What if you have coordinates?

You need to convert them to a spatial object with {sf}

29 /69

Here is a table of coordinates

regular_table

A tibble: 2 x 4

#H# id latitude longitude name
#it <int> <dbl> <dbl> <chr>
1 1 40.7 —-74.0 Empire State Building
#4 2 2 40.7 -74.0 One World Trade Center

30 /69

By the way X = longitude and Y = latitude

A mnemonic for latitude, longitude...
"A lat lays flat"

"Lat are steps on a ladder”

31/69

We'll cover this in more detail later but...

You use sf::st_as_sf() to convert coordinates to an {sf}
object

spatial_table <- regular_table %>%
st_as_sf(coords = c("longitude", "latitude"), crs = 4326)

st_geometry(spatial_table) %>% plot(cex = 2, col = "blue")

How about place names?

You need to link them to a spatial boundary file

33 /69

An example with US states

My list of place names

my_states <- data.frame(NAME = c("California", "Nevada"))
my_states

HH NAME
1 California
H# 2 Nevada

34 /69

Find an R package or spatial file with the
boundaries

More on this topic in a second

options(tigris_class = "sf")
states <- tigris::states()

35/69

Join your place names with the geographic file

states <- inner_join(states, my_states, by = c("NAME"))

Plot! Code explained later
tm_shape(states) + tm_polygons() + tm_text("NAME", size = 2)

Nevada

California \'

36 /69

Write withwrite_sf()

write_sf(spatial_table, "spatial_table.shp")
write_sf(spatial_table, "spatial_table.gpkg")
write_sf(spatial_table, "spatial_table.geojson")

37/ 69

Reading raster data

38 /69

For raster data use raster () and br-ick ()
from {raster}

39 /69

Which to use depends on the raster

e Use raster () for single-band images (e.g. elevation)

e Use brick() for multi-band images (e.g. satellite data)

40/ 69

Single vs multi-band

Single Band Raster Multi Band Raster

41 /69

Common multi-band raster -- a color image

42 [69

Note that thereis also a stack () function

e A sort of "virtual" raster brick
e Can refer to more than one file on disk

e We will not cover this

43 /69

raster () and brick() canread many
different file types

o TIFF/GeoTIFF
e IMG
« HDF4/5

44 |/ 69

A little more detail on the most common raster
file types

45/ 69

TIFF/GeoTIFF are the most common raster
format

e TIFF images can come with an extra "world" file (.tfw)
o A TIFF with the world file embedded is a GeoTIFF

e For storing single or multi-band rasters

46 / 69

ERDAS Imagine file

e For storing single and multi-band rasters

e Suffix is .img

47] 69

HDF4/5

« Hierarchical data format for large scientific data

e Multidimensional (often include both space and time
and more than one image)

48 / 69

All of these formats can store single or multi-
band images

49 /69

raster () for single band
Or to read one band from a multi-band image

library(raster)
canopy <- raster ("canopy.tif")

plot(canopy)

§ . Fere.,
= s e .
8 & l-‘ ‘T‘t‘;-::%-’."-‘f%ﬂr
Fo i 3 Ml) 4 g Lt
. 0 T i‘# S ¥
TR) -," 2 & < L
- fgam S FR S8
g | ey L0 e A N |
s J B %) e R,
] il ¥ 0 T
Sa - o 5 ki 80
Fis : Ao
> | S -
% i i
] Y ’ o if 40
- T d : WES:
E #
5 Y 20
E: PR
=1 | f LN,
=4 & ad
S e, o 0
e} 5 R, Pl
A
o
2
[=]
(=]
1=
T T T | T T T
800000 850000 900000 950000 1000000 1050000 1100000 1150000

50/69

brick () for multi-band

manhattan <- brick("manhattan.tif")

plotRGB (manhattan)

51/69

Write with writeRaster () for both single
and multi-layer files

writeRaster (canopy, "canopy.tif")
writeRaster (canopy, "canopy.grd")

52 /69

R packages for getting spatial data

53 /69

There are more than a dozen high quality
packages for fetching data

54 /69

Examples include...

e {rnaturalearth} - country and sub-country boundaries,
coastline, roads etc

e {FedData} - mostly US-focused, elevation, landcover,
climate

e {tidycensus} - US only, census data and geography

55/69

Quick examples of retrieving data using R
packages

56 /69

rnaturalearth

Free vector and raster map data at

) Natural Ear p

Home Features Downloads Blog Forums Corrections About
. Map Gallery
Richmond
.;Van}m Cowrao Karmba‘ ®
eSydney
Griffithe *Young
*Midura sLeston +Wollongong
* Deniliquin Goulbume eKiama
L]
o Swan Hil Wagga Waggae CANBERRA
Turmute * T A

Populated Places

Natural Earth is a public domain map dataset available at 1:10m, 1:50m, and 1:110 million scales. Featuring tightly integrated vector and
raster data, with Natural Earth you can make a variety of visually pleasing, well-crafted maps with cartography or GIS software.

(North American Cartographic Information Society), and is free for use in any type of project

Natural Earth was built through a collaboration of many volunteers and is supported by NACIS
(see our Terms of Use page for more information). {

Get the Data

57/69

{rnaturalearth}

o Countries, states, airports, roads, urban areas,
railroads, ocean and more

e Retrieves vector data

e Andy South, https://github.com/ropensci/rnaturalearth

58 /69

https://github.com/ropensci/rnaturalearth

{rnaturalearth} to get countries of the world

library(rnaturalearth)
countries <- ne_countries(returnclass = "sf")

We will talk about st_geometry() in the next section
st_geometry(countries) %>% plot()

59/69

{FedData}

o Elevation, hydrography, soils, climate, land cover
o Retrieves raster data

e Kyle Bocinsky, https://github.com/ropensci/FedData

www.mrlc.gov

60 /69

https://github.com/ropensci/FedData

{FedData} elevation in two steps

Step 1, define your extent:

library(FedData)

poly <- polygon_from_extent(
raster::extent (672800, 740000, 4102000, 4170000),
proj4string = "+proj=utm +datum=NAD83 +zone=12")
Step 2, download elevation data

ned <- get_ned(template = poly, label = "elevation")

61 /69

Plot the elevation data from {FedData}

raster::plot(ned)

©
~
o
0
5 3000
f: 2500
(o)
2 2000
(3]
o 1500
(]
B

T T T
-109.2 -109.0 -108.8 -108.6 -108.4 -108.2

62 /69

{tidycensus}

Percent of Household Income Toward Housing Costs

Median housing costs divided by median household income
by county from the 2011-2015 ACS

percent

30

a 20

Map by Austin Wehrwein
63 /69

{tidycensus}

o Access US Census data and geography
e Super-handy for my work!

o Kyle Walker, https://github.com/walkerke/tidycensus

64 /69

https://github.com/walkerke/tidycensus

You need an APl key from the Census!

e http://apl.census.gov/data/key_signup.html

o census_api_key("YOUR KEY GOES HERE")

65/ 69

http://api.census.gov/data/key_signup.html

If all you need is census geography you can use
{tigris} instead

This is what tidycensus uses

66 / 69

Get the data median income

us_county_income <- get_acs(geography "county",
variables "B19013_001",
geometry =)

67 /69

Plot the data

library(tmap)
tm_shape(us_county_income) +
tm_fill("estimate", pal = "-viridis")

68 / 69

open_exercise(2)

69 / 69

