
Visualizing Spatial Data
(static and interactive maps)

R has great map-making functionality!

2 / 94

This map was created in R

Source: Timo Grossenbacher

3 / 94

https://timogrossenbacher.ch/2019/04/bivariate-maps-with-ggplot2-and-sf/

This map was created in R

Source: spatial.ly

4 / 94

http://spatial.ly/2012/02/great-maps-ggplot2/

This map was created in R

Source: rayshader

5 / 94

https://github.com/tylermorganwall/rayshader

What packages should you use?

6 / 94

There are dozens of mapping-related packages
in R

But only a few are all-purpose

7 / 94

All-purpose static mapping
The plot() function

{tmap}

{ggplot2} (we won't cover {ggplot2})

8 / 94

All-purpose interactive mapping
{tmap}

{mapview}

{leaflet} (we won't cover {leaflet})

9 / 94

A lot of great packages for niche mapping
needs

{rayshader}

{geogrid}

{globe}

{linemap}

{cartogram}

{cartography}

{mapedit}

{rasterVis}

10 / 94

Static mapping

11 / 94

Take home messages
I use plot() for a quick look at data

I use {tmap} for everything else

{tmap} has an insane amount of customization
allowed, we will only touch the surface

12 / 94

Why not ggplot2?
I love ggplot2 and use it every day

But I find making maps significantly easier in tmap
Can do almost anything in tmap
Easy to include just fill, just borders, etc

Interactive views

etc...

13 / 94

But I will show a ggplot-map at the end of this
section

14 / 94

plot()

15 / 94

Yes plot() is not super exciting

16 / 94

But plot() is great for a quick look at your
data

17 / 94

plot() has methods for vector and raster
data
The packages need to be loaded to plot vector and raster
data

18 / 94

Some setup: load packages
No need to type with me, you'll practice in the exercise

library(sf) # read vectors
library(raster) # read rasters
library(tmap) # mapping

19 / 94

Some setup: read in NYC data
boroughs <- read_sf("boroughs.gpkg")
schools <- read_sf("schools.shp")
canopy <- raster("canopy.grd")

20 / 94

With vectors the default is to plot the
attributes
plot(boroughs)

21 / 94

I don't really like this default

22 / 94

You can plot a single attribute
plot(boroughs['Shape_Area'], main = "Area",
 pal = rev(heat.colors(5)))

23 / 94

For a quick look at vectors, I often just want the
geometry

You can extract just the geometry with st_geometry()

Then call plot() on the output

24 / 94

st_geometry() and then plot
st_geometry(boroughs) %>% plot()

25 / 94

Or wrap the two functions
plot(st_geometry(boroughs))

26 / 94

Try to memorize this concept/code
st_geometry(boroughs) %>% plot()

plot(st_geometry(boroughs))

27 / 94

To combine layers with plot() use add =
TRUE
plot(st_geometry(boroughs))
plot(st_geometry(schools), add = TRUE,
 pch = 16, col = "red", cex = 0.5)

28 / 94

Careful with add = TRUE, only works with
st_geometry()
This won't work!
plot(boroughs)
plot(schools, add = TRUE)

29 / 94

Easy to use plot() with rasters
plot(canopy) # a single band raster

30 / 94

If your raster has multiple layers (like an
image) ...
plot() maps each layer separately

plot(manhattan)

31 / 94

If your raster has a red, green and blue layer
(like an image)
You can plot them together...

plotRGB(manhattan)

32 / 94

Combine rasters and vectors with plot()
plot(canopy)
plot(st_geometry(schools), add = T,
 pch = 16, col = "red", cex = 0.5)

33 / 94

For more sophisticated and fun static maps I
use {tmap}

34 / 94

{tmap}

35 / 94

So much control with {tmap}!
tm_text(text, size = 1, col = NA, root = 3, clustering = FAL
 size.lim = NA, sizes.legend = NULL, sizes.legend.labels =
 sizes.legend.text = "Abc", n = 5, style = ifelse(is.null(b
 "pretty", "fixed"), breaks = NULL, interval.closure = "lef
 palette = NULL, labels = NULL, labels.text = NA, midpoint
 stretch.palette = TRUE, contrast = NA, colorNA = NA,
 textNA = "Missing", showNA = NA, colorNULL = NA, fontface
 fontfamily = NA, alpha = NA, case = NA, shadow = FALSE,
 bg.color = NA, bg.alpha = NA, size.lowerbound = 0.4,
 print.tiny = FALSE, scale = 1, auto.placement = FALSE,
 remove.overlap = FALSE, along.lines = FALSE,
 overwrite.lines = FALSE, just = "center", xmod = 0, ymod =
 title.size = NA, title.col = NA, legend.size.show = TRUE,
 legend.col.show = TRUE, legend.format = list(),
 legend.size.is.portrait = FALSE, legend.col.is.portrait =
 legend.size.reverse = FALSE, legend.col.reverse = FALSE,
 legend.hist = FALSE, legend.hist.title = NA, legend.size.z
 legend.col.z = NA, legend.hist.z = NA, group = NA,
 auto.palette.mapping = NULL, max.categories = NULL)

36 / 94

{tmap} syntax is similar to {ggplot2}
data set up layer
tm_shape(boroughs) + tm_polygons()

37 / 94

A short-cut qtm()
Instead of plot() I often use this

qtm(boroughs)

38 / 94

Add multiple layers based on one input
tm_shape(boroughs) +
 tm_polygons() +
 tm_dots(size = 2) +
 tm_text("BoroName", col = "red", size = 1.5)

39 / 94

Or multiple di�erent layers using multiple
shapes
tm_shape(boroughs) + tm_borders() +
 tm_shape(schools) + tm_dots(size = 0.25)

40 / 94

You can also save parts of the map and reuse
mymap <- tm_shape(boroughs) + tm_polygons()

mymap + tm_dots(size = 2) +
 tm_text("BoroName", col = "red")

41 / 94

Choropleth (color-coded map) based on a
variable. So easy!
tm_shape(boroughs) + tm_polygons("Shape_Area")

42 / 94

Or show an attribute with tm_symbols()
tm_shape(boroughs) + tm_borders() +
 tm_symbols("Shape_Area", scale = 2)

43 / 94

Plot multiple variables at once
tm_shape(boroughs) + tm_polygons(c("Shape_Area", "BoroName")

44 / 94

tm_shape() can accept vector or raster

45 / 94

Single-band raster with tm_raster()
tm_shape(canopy) + tm_raster()

46 / 94

A multi-layer raster with tm_rgb()
tm_shape(manhattan) + tm_rgb()

47 / 94

Vector and raster
tm_shape(manhattan) + tm_rgb()+
 tm_shape(boroughs) + tm_borders(col = "white", lwd = 2)

48 / 94

Include a basemap in your map
Use a function from the companion package, {tmaptools}

osmtiles <- tmaptools::read_osm(boroughs,
 type="stamen-terrain")

49 / 94

Include a basemap in your map
tm_shape(osmtiles) + tm_raster() +
 tm_shape(boroughs) +
 tm_borders(lwd = 2, col = "yellow")

50 / 94

Map extent is driven by the "master"
First shape is master by default

in tm_shape() can use is.master = TRUE

51 / 94

Here is the default (extent based on raster)
tm_shape(canopy) +
 tm_raster(title = "(percent canopy)", alpha = 0.75) +
 tm_shape(boroughs) + tm_borders(lwd = 2, col = "blue")

52 / 94

Force the extent to be the polygon borders
tm_shape(canopy) +
 tm_raster(title = "(percent canopy)", alpha = 0.75) +
 tm_shape(boroughs, is.master = TRUE) + tm_borders(lwd = 2,

53 / 94

Using color palettes in tmap
viridis

RColorBrewer

54 / 94

https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html
http://colorbrewer2.org/#type=sequential&scheme=BuGn&n=3

palette_explorer() is great
tmaptools::palette_explorer()

55 / 94

Use a palette with the pal argument
tm_shape(neighborhoods) +
 tm_polygons("shape_area", n = 5, pal = "Greens")

56 / 94

Use - to reverse the palette
tm_shape(neighborhoods) +
 tm_polygons("shape_area", n = 5, pal = "-Greens")

57 / 94

Alter the map layout with tm_layout()
tm_shape(neighborhoods) +
 tm_polygons("shape_area", n = 5, pal = "Greens") +
 tm_layout(legend.show = FALSE, frame = FALSE)

58 / 94

Save your maps with tmap_save()
mymap <- tm_shape(boroughs) + tm_polygons()
tmap_save(mymap, "mymap.png")

59 / 94

It's easy to include more than one map in an
image with tmap_arrange()
Create three maps
m1 <- tm_shape(boroughs) + tm_polygons()
m2 <- tm_shape(neighborhoods) + tm_polygons()
m3 <- tm_shape(schools) + tm_dots(size = 0.25)

60 / 94

Arrange them on one image
tmap_arrange(m1, m2, m3, nrow = 1)

61 / 94

So many great other functions to explore
tmap_save()

tm_layout()

tm_style()

tm_facets()

tm_animation()

tm_scale_bar()

tm_compass()

62 / 94

As promised earlier, three slides on mapping
with {ggplot2}

63 / 94

{ggplot2} has a special layer for {sf} objects
geom_sf()

64 / 94

With geom_sf() no need to specify x and y
Unlike geom_line(), geom_points() etc

65 / 94

To create a choropleth use aes() with the �ll
argument
library(ggplot2)
ggplot() +
 geom_sf(data = boroughs, aes(fill = BoroCode)) +
 geom_sf(data = schools, color = "purple")

66 / 94

You can also make nice maps with {ggplot2}

Source: Timo Grossenbacher

67 / 94

https://timogrossenbacher.ch/2019/04/bivariate-maps-with-ggplot2-and-sf/

Keep in mind, there are other packages worth
exploring

68 / 94

Quick example of geogrid

https://github.com/jbaileyh/geogrid

69 / 94

https://github.com/jbaileyh/geogrid

Hillshading with rayshader

https://github.com/tylermorganwall/rayshader

70 / 94

https://github.com/tylermorganwall/rayshader

Cartographic representations with
{cartography}

https://github.com/riatelab/cartography

71 / 94

https://github.com/riatelab/cartography

open_exercise(3) and work on activity 1-9
then stop

72 / 94

Interactive maps

73 / 94

There are two packages I use for interactive
maps

{mapview} (for a quick interactive look)

{tmap} (for a more polished interactive map)

74 / 94

Why not RStudio's {lea�et}
Main reason is it requires layers to be unprojected (we
will discuss)

There are work-arounds like leafletCRS()

But {tmap} and {mapview} do a great job

75 / 94

Both {tmap} and {mapview} also use the Lea�et
JavaScript API

76 / 94

Since we're already talking about {tmap} let's
start with {tmap}

77 / 94

Remember this static {tmap} from earlier?

78 / 94

Use tmap_mode() to change from static to
interactive
tmap_mode("plot") # default
my_map

79 / 94

So easy to make it interactive
tmap_mode("view") # make interactive
my_map # recreate plot

80 / 94

Running tmap_mode() with no argument
will give the current mode
tmap_mode()
current tmap mode is "view"

81 / 94

tmap can do side-by-side linked plots
tmap_mode("view")
tm_shape(boroughs) +
 tm_polygons(c("pop2018", "pop_change"),
 palette = "Oranges")

82 / 94

Save your interactive tmap with
tmap_save()
mymap <- tm_shape(boroughs) + tm_polygons()
tmap_save(mymap, "mymap.html")

83 / 94

{mapview}

84 / 94

Great for a quick interactive look at data
library(mapview)
mapview(boroughs)

85 / 94

Like {tmap}, a lot of customization allowed
mapview(x, map = NULL,
 maxpixels = mapviewGetOption("mapview.maxpixels"),
 col.regions = mapviewGetOption("raster.palette")(256), at
 na.color = mapviewGetOption("na.color"), use.layer.names =
 values = NULL, map.types = mapviewGetOption("basemaps"),
 alpha.regions = 0.8, legend = mapviewGetOption("legend"),
 legend.opacity = 1, trim = TRUE,
 verbose = mapviewGetOption("verbose"), layer.name = NULL,
 homebutton = TRUE, native.crs = FALSE, method = c("bilinea
 "ngb"), label = TRUE, query.type = c("mousemove", "click")
 query.digits, query.position = "topright", query.prefix =
 viewer.suppress = FALSE, ...)

86 / 94

And easier than...
tmap_mode("view")
tm_shape(boroughs) + tm_polygons()

87 / 94

Multiple layers in one map with list()
library(mapview)
mapview(list(boroughs, schools))

88 / 94

Alternative syntax for multiple layers
mapview(boroughs) + mapview(schools)

mapview(boroughs) + schools

89 / 94

Color-code based on an attribute use the zcol
argument
mapview(boroughs, zcol = "Shape_Area")

90 / 94

Also allows rasters
mapview(canopy, alpha.regions = 0.4)

91 / 94

Saving your mapview interactive map with
mapshot
Output is very similar to {tmap} (html file and folder)

mymap <- mapview(boroughs)
mapshot(mymap, "mymap.html")

92 / 94

For both static and interactive maps
You can include in R markdown

You can include in shiny application

If you save with tmap_save() or mapshot() you can
upload the files directly to a server

93 / 94

open_exercise(3) and �nish

94 / 94

