
Getting Geospatial Data
Into R

Ways to get spatial data into R
Load external spatial files

Load or fetch data with specialized R packages

2 / 69

In this section I'll be showing some code I'll
cover in more detail later

3 / 69

Reading in existing data

4 / 69

What function you use depends on the type of
data

Read vector data with the {sf} package

Read raster data with the {raster} package

5 / 69

Reading vector data

6 / 69

For vector data use read_sf() from {sf}

7 / 69

You can also use st_read() from {sf} but
read_sf() is more "tidy"

stringsAsFactors = FALSE

quiet = TRUE

as_tibble = TRUE

8 / 69

read_sf() to read many di�erent �le types
Shapefiles

Geopackages

Geojson

Even databases!

9 / 69

This makes things so much easier!

10 / 69

A little more detail on the most common vector
�le types

11 / 69

Shape�les are the most common spatial �les

12 / 69

Shape�les have been around a long time!

13 / 69

Shape�les can be unpleasant to work with
Columns can only be 10 or fewer characters

Inconveniently a single shapefile is represented by
multiple files

14 / 69

This is one "shape�le"

A shapefile can also have several other associated files

15 / 69

Time to move away from shape�les

16 / 69

Geopackages are rapidly gaining acceptance
Open format

Just one file, technically they are a SQLite container

Can store multiple layers in one file

17 / 69

Geojson, spatial data for the web
geojson is json (javascript) with geographic attributes

Files can be a little larger

Extension is usually .geojson (sometimes .json)

Can only be latitude/longitude

18 / 69

One point in geojson
{
 "type": "FeatureCollection",
 "crs": {
 "type": "name",
 "properties": {
 "name": "urn:ogc:def:crs:OGC:1.3:CRS84"
 }
 },
 "features": [{
 "type": "Feature",
 "properties": {
 "location": "Gimme! Coffee"
 },
 "geometry": {
 "type": "Point",
 "coordinates": [-73.995001, 40.722401]
 }
 }]
}

19 / 69

gimme! co�ee, one of my favorites

20 / 69

A note on topojson, another format for the web
Topojson is similar to geojson but stores geometries
more efficiently

For example, a border between two countries would be
stored just once.

read_sf() can also read this

21 / 69

Let's see read_sf() in action

22 / 69

Simple example of read_sf()
library(sf)
boroughs <- read_sf("boroughs.shp")

23 / 69

read_sf() has a consistent syntax
boroughs <- read_sf("boroughs.shp")
boroughs <- read_sf("boroughs.geojson")
boroughs <- read_sf("boroughs.gpkg")

24 / 69

The result will be a {sf} table ... more details
later
glimpse(boroughs)

Observations: 5
Variables: 7
$ BoroCode <int> 1, 2, 5, 3, 4
$ BoroName <chr> "Manhattan", "The Bronx", "Staten…
$ Shape_Leng <dbl> 339736.6, 397460.6, 318700.5, 576…
$ Shape_Area <dbl> 635147797, 1182399343, 1630762350…
$ diso <int> 1, 1, 1, 1, 1
$ AreaSqMile <dbl> 22.78279, 42.41274, 58.49555, 71.…
$ geom <MULTIPOLYGON [US_survey_foot]> MULTIPO…

25 / 69

You can also read from a URL directly
Topojson
usa <- read_sf("http://bit.ly/2NhznGt")

Plotting discussed later
st_geometry(usa) %>% plot()

26 / 69

A note on making non-spatial data spatial
Addresses

Coordinates

Place names

27 / 69

If you have addresses, you need to "geocode" to
get coordinates
Uses Google Maps
ggmap::geocode("Hilton San Francisco Union Square")

Observations: 1
Variables: 8
$ query <chr> "Hilton San Francisco Union Square"
$ lat <dbl> 37.78573
$ lon <dbl> -122.4104
$ lat_min <dbl> 37.78519
$ lat_max <dbl> 37.78612
$ lon_min <dbl> -122.4112
$ lon_max <dbl> -122.4096
$ geometry <POINT [°]> POINT (-122.4104 37.78573)

Uses Open Street Map
tmaptools::geocode_OSM("Hilton San Francisco Union Square",
 as.sf = TRUE) %>%
 glimpse()

28 / 69

What if you have coordinates?
You need to convert them to a spatial object with {sf}

29 / 69

Here is a table of coordinates
regular_table

A tibble: 2 x 4
id latitude longitude name
<int> <dbl> <dbl> <chr>
1 1 40.7 -74.0 Empire State Building
2 2 40.7 -74.0 One World Trade Center

30 / 69

By the way X = longitude and Y = latitude
A mnemonic for latitude, longitude...

"A lat lays flat"

"Lat are steps on a ladder"

31 / 69

We'll cover this in more detail later but...
You use sf::st_as_sf() to convert coordinates to an {sf}
object

spatial_table <- regular_table %>%
 st_as_sf(coords = c("longitude", "latitude"), crs = 4326)

st_geometry(spatial_table) %>% plot(cex = 2, col = "blue")

How about place names?
You need to link them to a spatial boundary file

33 / 69

An example with US states
My list of place names
my_states <- data.frame(NAME = c("California", "Nevada"))
my_states

NAME
1 California
2 Nevada

34 / 69

Find an R package or spatial �le with the
boundaries
More on this topic in a second

options(tigris_class = "sf")
states <- tigris::states()

35 / 69

Join your place names with the geographic �le
states <- inner_join(states, my_states, by = c("NAME"))

Plot! Code explained later
tm_shape(states) + tm_polygons() + tm_text("NAME", size = 2)

36 / 69

Write with write_sf()
write_sf(spatial_table, "spatial_table.shp")
write_sf(spatial_table, "spatial_table.gpkg")
write_sf(spatial_table, "spatial_table.geojson")

37 / 69

Reading raster data

38 / 69

For raster data use raster() and brick()
from {raster}

39 / 69

Which to use depends on the raster
Use raster() for single-band images (e.g. elevation)

Use brick() for multi-band images (e.g. satellite data)

40 / 69

Single vs multi-band

41 / 69

Common multi-band raster -- a color image

42 / 69

Note that there is also a stack() function
A sort of "virtual" raster brick

Can refer to more than one file on disk

We will not cover this

43 / 69

raster() and brick() can read many
di�erent �le types

TIFF/GeoTIFF

IMG

HDF4/5

44 / 69

A little more detail on the most common raster
�le types

45 / 69

TIFF/GeoTIFF are the most common raster
format

TIFF images can come with an extra "world" file (.tfw)

A TIFF with the world file embedded is a GeoTIFF

For storing single or multi-band rasters

46 / 69

ERDAS Imagine �le
For storing single and multi-band rasters

Suffix is .img

47 / 69

HDF4/5
Hierarchical data format for large scientific data

Multidimensional (often include both space and time
and more than one image)

48 / 69

All of these formats can store single or multi-
band images

49 / 69

raster() for single band
Or to read one band from a multi-band image

library(raster)
canopy <- raster("canopy.tif")

plot(canopy)

50 / 69

brick() for multi-band
manhattan <- brick("manhattan.tif")

plotRGB(manhattan)

51 / 69

Write with writeRaster() for both single
and multi-layer �les
writeRaster(canopy, "canopy.tif")
writeRaster(canopy, "canopy.grd")

52 / 69

R packages for getting spatial data

53 / 69

There are more than a dozen high quality
packages for fetching data

54 / 69

Examples include...
{rnaturalearth} - country and sub-country boundaries,
coastline, roads etc

{FedData} - mostly US-focused, elevation, landcover,
climate

{tidycensus} - US only, census data and geography

55 / 69

Quick examples of retrieving data using R
packages

56 / 69

{rnaturalearth}

57 / 69

{rnaturalearth}
Countries, states, airports, roads, urban areas,
railroads, ocean and more

Retrieves vector data

Andy South, https://github.com/ropensci/rnaturalearth

58 / 69

https://github.com/ropensci/rnaturalearth

{rnaturalearth} to get countries of the world
library(rnaturalearth)
countries <- ne_countries(returnclass = "sf")

We will talk about st_geometry() in the next section
st_geometry(countries) %>% plot()

59 / 69

{FedData}

Elevation, hydrography, soils, climate, land cover

Retrieves raster data

Kyle Bocinsky, https://github.com/ropensci/FedData

www.mrlc.gov

60 / 69

https://github.com/ropensci/FedData

{FedData} elevation in two steps
Step 1, define your extent:

library(FedData)

poly <- polygon_from_extent(
 raster::extent(672800, 740000, 4102000, 4170000),
 proj4string = "+proj=utm +datum=NAD83 +zone=12")

Step 2, download elevation data

ned <- get_ned(template = poly, label = "elevation")

61 / 69

Plot the elevation data from {FedData}
raster::plot(ned)

62 / 69

{tidycensus}

Map by Austin Wehrwein

63 / 69

{tidycensus}
Access US Census data and geography

Super-handy for my work!

Kyle Walker, https://github.com/walkerke/tidycensus

64 / 69

https://github.com/walkerke/tidycensus

You need an API key from the Census!
http://api.census.gov/data/key_signup.html

census_api_key("YOUR KEY GOES HERE")

65 / 69

http://api.census.gov/data/key_signup.html

If all you need is census geography you can use
{tigris} instead
This is what tidycensus uses

66 / 69

Get the data median income
us_county_income <- get_acs(geography = "county",
 variables = "B19013_001",
 geometry = TRUE)

67 / 69

Plot the data
library(tmap)
tm_shape(us_county_income) +
 tm_fill("estimate", pal = "-viridis")

68 / 69

open_exercise(2)

69 / 69

