
Visualizing Spatial Data
(static and interactive maps)



R has great map-making functionality!
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This map was created in R

Source: Timo Grossenbacher
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https://timogrossenbacher.ch/2019/04/bivariate-maps-with-ggplot2-and-sf/


This map was created in R

Source: spatial.ly
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http://spatial.ly/2012/02/great-maps-ggplot2/


This map was created in R

Source: rayshader
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https://github.com/tylermorganwall/rayshader


What packages should you use?
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There are dozens of mapping-related packages
in R

But only a few are all-purpose
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All-purpose static mapping
The plot() function

{tmap}

{ggplot2} (we won't cover {ggplot2})

8 / 94



All-purpose interactive mapping
{tmap}

{mapview}

{leaflet} (we won't cover {leaflet})
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A lot of great packages for niche mapping
needs

{rayshader}

{geogrid}

{globe}

{linemap}

{cartogram}

{cartography}

{mapedit}

{rasterVis}
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Static mapping
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Take home messages
I use plot() for a quick look at data

I use {tmap} for everything else

{tmap} has an insane amount of customization
allowed, we will only touch the surface
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Why not ggplot2?
I love ggplot2 and use it every day

But I find making maps significantly easier in tmap
Can do almost anything in tmap
Easy to include just fill, just borders, etc

Interactive views

etc...
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But I will show a ggplot-map at the end of this
section
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plot()

15 / 94



Yes plot() is not super exciting
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But plot() is great for a quick look at your
data
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plot() has methods for vector and raster
data
The packages need to be loaded to plot vector and raster
data
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Some setup: load packages
No need to type with me, you'll practice in the exercise

library(sf)     # read vectors
library(raster) # read rasters
library(tmap)   # mapping
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Some setup: read in NYC data
boroughs <- read_sf("boroughs.gpkg")
schools <- read_sf("schools.shp")
canopy <- raster("canopy.grd")
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With vectors the default is to plot the
attributes
plot(boroughs)
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I don't really like this default
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You can plot a single attribute
plot(boroughs['Shape_Area'], main = "Area",
     pal = rev(heat.colors(5)))
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For a quick look at vectors, I often just want the
geometry

You can extract just the geometry with st_geometry()

Then call plot() on the output
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st_geometry() and then plot
st_geometry(boroughs) %>% plot()
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Or wrap the two functions
plot(st_geometry(boroughs))
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Try to memorize this concept/code
st_geometry(boroughs) %>% plot()

plot(st_geometry(boroughs))
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To combine layers with plot() use add =
TRUE
plot(st_geometry(boroughs))
plot(st_geometry(schools), add = TRUE,
     pch = 16, col = "red", cex = 0.5)

28 / 94



Careful with add = TRUE, only works with
st_geometry()
# This won't work!
plot(boroughs)
plot(schools, add = TRUE)
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Easy to use plot() with rasters
plot(canopy) # a single band raster
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If your raster has multiple layers (like an
image) ...
plot() maps each layer separately

plot(manhattan)
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If your raster has a red, green and blue layer
(like an image)
You can plot them together...

plotRGB(manhattan)
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Combine rasters and vectors with plot()
plot(canopy)
plot(st_geometry(schools), add = T,
     pch = 16, col = "red", cex = 0.5)
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For more sophisticated and fun static maps I
use {tmap}
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{tmap}
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So much control with {tmap}!
tm_text(text, size = 1, col = NA, root = 3, clustering = FAL
  size.lim = NA, sizes.legend = NULL, sizes.legend.labels = 
  sizes.legend.text = "Abc", n = 5, style = ifelse(is.null(b
  "pretty", "fixed"), breaks = NULL, interval.closure = "lef
  palette = NULL, labels = NULL, labels.text = NA, midpoint 
  stretch.palette = TRUE, contrast = NA, colorNA = NA,
  textNA = "Missing", showNA = NA, colorNULL = NA, fontface 
  fontfamily = NA, alpha = NA, case = NA, shadow = FALSE,
  bg.color = NA, bg.alpha = NA, size.lowerbound = 0.4,
  print.tiny = FALSE, scale = 1, auto.placement = FALSE,
  remove.overlap = FALSE, along.lines = FALSE,
  overwrite.lines = FALSE, just = "center", xmod = 0, ymod =
  title.size = NA, title.col = NA, legend.size.show = TRUE,
  legend.col.show = TRUE, legend.format = list(),
  legend.size.is.portrait = FALSE, legend.col.is.portrait = 
  legend.size.reverse = FALSE, legend.col.reverse = FALSE,
  legend.hist = FALSE, legend.hist.title = NA, legend.size.z
  legend.col.z = NA, legend.hist.z = NA, group = NA,
  auto.palette.mapping = NULL, max.categories = NULL)
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{tmap} syntax is similar to {ggplot2}
# data set up           layer               
tm_shape(boroughs) + tm_polygons()
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A short-cut qtm()
Instead of plot() I often use this

qtm(boroughs)
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Add multiple layers based on one input
tm_shape(boroughs) + 
  tm_polygons() +   
  tm_dots(size = 2) +
  tm_text("BoroName", col = "red", size = 1.5)
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Or multiple di�erent layers using multiple
shapes
tm_shape(boroughs) + tm_borders() +
  tm_shape(schools) + tm_dots(size = 0.25)
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You can also save parts of the map and reuse
mymap <- tm_shape(boroughs) + tm_polygons()

mymap + tm_dots(size = 2) +
  tm_text("BoroName", col = "red")
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Choropleth (color-coded map) based on a
variable. So easy!
tm_shape(boroughs) + tm_polygons("Shape_Area")
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Or show an attribute with tm_symbols()
tm_shape(boroughs) + tm_borders() +
  tm_symbols("Shape_Area", scale = 2)
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Plot multiple variables at once
tm_shape(boroughs) + tm_polygons(c("Shape_Area", "BoroName")
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tm_shape() can accept vector or raster
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Single-band raster with tm_raster()
tm_shape(canopy) + tm_raster()
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A multi-layer raster with tm_rgb()
tm_shape(manhattan) + tm_rgb()
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Vector and raster
tm_shape(manhattan) + tm_rgb()+
  tm_shape(boroughs) + tm_borders(col = "white", lwd = 2)

48 / 94



Include a basemap in your map
Use a function from the companion package, {tmaptools}

osmtiles <- tmaptools::read_osm(boroughs,
  type="stamen-terrain")
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Include a basemap in your map
tm_shape(osmtiles) + tm_raster() +
  tm_shape(boroughs) +
  tm_borders(lwd = 2, col = "yellow")
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Map extent is driven by the "master"
First shape is master by default

in tm_shape() can use is.master = TRUE
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Here is the default (extent based on raster)
tm_shape(canopy) +
  tm_raster(title = "(percent canopy)", alpha = 0.75) +
  tm_shape(boroughs) + tm_borders(lwd = 2, col = "blue")
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Force the extent to be the polygon borders
tm_shape(canopy) +
  tm_raster(title = "(percent canopy)", alpha = 0.75) +
  tm_shape(boroughs, is.master = TRUE) + tm_borders(lwd = 2,
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Using color palettes in tmap
viridis

RColorBrewer
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https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html
http://colorbrewer2.org/#type=sequential&scheme=BuGn&n=3


palette_explorer() is great
tmaptools::palette_explorer()
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Use a palette with the pal argument
tm_shape(neighborhoods) +
  tm_polygons("shape_area", n = 5, pal = "Greens")
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Use - to reverse the palette
tm_shape(neighborhoods) +
  tm_polygons("shape_area", n = 5, pal = "-Greens")
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Alter the map layout with tm_layout()
tm_shape(neighborhoods) +
  tm_polygons("shape_area", n = 5, pal = "Greens") +
  tm_layout(legend.show = FALSE, frame = FALSE)
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Save your maps with tmap_save()
mymap <- tm_shape(boroughs) + tm_polygons()
tmap_save(mymap, "mymap.png")
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It's easy to include more than one map in an
image with tmap_arrange()
# Create three maps
m1 <- tm_shape(boroughs) + tm_polygons()
m2 <- tm_shape(neighborhoods) + tm_polygons()
m3 <- tm_shape(schools) + tm_dots(size = 0.25)
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Arrange them on one image
tmap_arrange(m1, m2, m3, nrow = 1)
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So many great other functions to explore
tmap_save()

tm_layout()

tm_style()

tm_facets()

tm_animation()

tm_scale_bar()

tm_compass()
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As promised earlier, three slides on mapping
with {ggplot2}
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{ggplot2} has a special layer for {sf} objects
geom_sf()
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With geom_sf() no need to specify x and y
Unlike geom_line(), geom_points() etc
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To create a choropleth use aes() with the �ll
argument
library(ggplot2)
ggplot() + 
  geom_sf(data = boroughs, aes(fill = BoroCode)) +
  geom_sf(data = schools, color = "purple")
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You can also make nice maps with {ggplot2}

Source: Timo Grossenbacher
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https://timogrossenbacher.ch/2019/04/bivariate-maps-with-ggplot2-and-sf/


Keep in mind, there are other packages worth
exploring

68 / 94



Quick example of geogrid

https://github.com/jbaileyh/geogrid
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https://github.com/jbaileyh/geogrid


Hillshading with rayshader

https://github.com/tylermorganwall/rayshader
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https://github.com/tylermorganwall/rayshader


Cartographic representations with
{cartography}

https://github.com/riatelab/cartography
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https://github.com/riatelab/cartography


open_exercise(3) and work on activity 1-9
then stop

72 / 94



Interactive maps
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There are two packages I use for interactive
maps

{mapview} (for a quick interactive look)

{tmap} (for a more polished interactive map)
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Why not RStudio's {lea�et}
Main reason is it requires layers to be unprojected (we
will discuss)

There are work-arounds like leafletCRS()

But {tmap} and {mapview} do a great job
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Both {tmap} and {mapview} also use the Lea�et
JavaScript API
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Since we're already talking about {tmap} let's
start with {tmap}

77 / 94



Remember this static {tmap} from earlier?
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Use tmap_mode() to change from static to
interactive
tmap_mode("plot") # default
my_map
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So easy to make it interactive
tmap_mode("view") # make interactive
my_map # recreate plot
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Running tmap_mode() with no argument
will give the current mode
tmap_mode()
# current tmap mode is "view"
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tmap can do side-by-side linked plots
tmap_mode("view")
tm_shape(boroughs) +
  tm_polygons(c("pop2018", "pop_change"),
    palette = "Oranges")
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Save your interactive tmap with
tmap_save()
mymap <- tm_shape(boroughs) + tm_polygons()
tmap_save(mymap, "mymap.html")
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{mapview}
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Great for a quick interactive look at data
library(mapview)
mapview(boroughs)
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Like {tmap}, a lot of customization allowed
mapview(x, map = NULL,
  maxpixels = mapviewGetOption("mapview.maxpixels"),
  col.regions = mapviewGetOption("raster.palette")(256), at 
  na.color = mapviewGetOption("na.color"), use.layer.names =
  values = NULL, map.types = mapviewGetOption("basemaps"),
  alpha.regions = 0.8, legend = mapviewGetOption("legend"),
  legend.opacity = 1, trim = TRUE,
  verbose = mapviewGetOption("verbose"), layer.name = NULL,
  homebutton = TRUE, native.crs = FALSE, method = c("bilinea
  "ngb"), label = TRUE, query.type = c("mousemove", "click")
  query.digits, query.position = "topright", query.prefix = 
  viewer.suppress = FALSE, ...)
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And easier than...
tmap_mode("view")
tm_shape(boroughs) + tm_polygons()
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Multiple layers in one map with list()
library(mapview)
mapview(list(boroughs, schools))
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Alternative syntax for multiple layers
mapview(boroughs) + mapview(schools)

mapview(boroughs) + schools
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Color-code based on an attribute use the zcol
argument
mapview(boroughs, zcol = "Shape_Area")
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Also allows rasters
mapview(canopy, alpha.regions = 0.4)
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Saving your mapview interactive map with
mapshot
Output is very similar to {tmap} (html file and folder)

mymap <- mapview(boroughs)
mapshot(mymap, "mymap.html")
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For both static and interactive maps
You can include in R markdown

You can include in shiny application

If you save with tmap_save() or mapshot() you can
upload the files directly to a server
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open_exercise(3) and �nish
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