Visualizing Spatial Data

(static and interactive maps)




R has great map-making functionality!
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This map was created in R

Switzerland's regional income (in-)equality

Average yearly income and income (in-)equality in Swiss municipalities, 2015

Grey areas mean
low income and
low inequality

Blue areas mean
high income and
low inequality

Violet areas mean
high income and
high inequality

Red areas mean
low income and
high inequality

Higher income —s
®,

Higher inequality —s

ithub.com/arssnbchr/bivariate-maps-ggplot2-sf
er (@grssnbchr), Angelo Zehr (
rt BFS and swisstopo; Data: ES

Map CC-BY-5A; C

Source: Timo Grossenbacher
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https://timogrossenbacher.ch/2019/04/bivariate-maps-with-ggplot2-and-sf/

This map was created in R

London Cycle Hire Journeys

Thicker, yellower lines mean more journeys

Source: spatial.ly
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http://spatial.ly/2012/02/great-maps-ggplot2/

This map was created in R

Source: rayshader
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https://github.com/tylermorganwall/rayshader

What packages should you use?

6/94



There are dozens of mapping-related packages
inR

e But only a few are all-purpose
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All-purpose static mapping

e The plot() function
e {tmap}
e {ggplot2} (we won't cover {ggplot2})
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All-purpose interactive mapping

e {tmap}
e {mapview}
e {leaflet} (we won't cover {leaflet})
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A lot of great packages for niche mapping
needs

e {rayshader}

e {geogrid}

e {globe}

e {linemap}

e {cartogram}
e {cartography}
e {mapedit}

e {rasterVis}
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Static mapping
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Take home messages

e Tuse plot() for a quick look at data
e Tuse {tmap} for everything else

e {tmap} has an insane amount of customization
allowed, we will only touch the surface
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Why not ggplot2?

e Ilove ggplot2 and use it every day

e ButI find making maps significantly easier in tmap
o Can do almost anything in tmap

o Easy to include just fill, just borders, etc
o Interactive views
o etc...
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But | will show a ggplot-map at the end of this
section
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plot()
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Yes plot () is not super exciting
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But plot () is great for a quick look at your
data
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plot () has methods for vector and raster
data

The packages need to be loaded to plot vector and raster
data
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Some setup: load packages
No need to type with me, you'll practice in the exercise

library(sf) # read vectors
library(raster) # read rasters
library(tmap) # mapping
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Some setup: read in NYC data

boroughs <- read_sf("boroughs.gpkg")
schools <- read_sf("schools.shp")
canopy <- raster("canopy.grd")
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With vectors the default is to plot the
attributes

plot(boroughs)

21/94



| don't really like this default
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You can plot a single attribute

plot(boroughs['Shape_Area'], main = "Area",
pal = rev(heat.colors(5)))
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For a quick look at vectors, | often just want the
geometry

e You can extract just the geometry with st_geometry ()

e Then call plot() on the output
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st_geometry () and then plot

st_geometry(boroughs) %>% plot()
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Or wrap the two functions

plot(st_geometry(boroughs))
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Try to memorize this concept/code

st_geometry(boroughs) %>% plot()

plot(st_geometry(boroughs))
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To combine layers with plot () use add =
TRUE

plot(st_geometry(boroughs))
plot(st_geometry(schools), add = TRUE,
pch = 16, col = "red", cex = 0.5)
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(areful with add = TRUE, only works with
st_geometry ()

# This won't work!
plot(boroughs)
plot(schools, add = TRUE)
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Easy to use plot () with rasters

plot(canopy) # a single band raster
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If your raster has multiple layers (like an
image) ...
plot () maps each layer separately

plot(manhattan)
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If your raster has a red, green and blue layer
(like an image)
You can plot them together...

plotRGB(manhattan)
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Combine rasters and vectors with plot ()

plot(canopy)
plot(st_geometry(schools), add = T,
pch = 16, col = "red", cex = 0.5)
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For more sophisticated and fun static maps |
use {tmap}
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{tmap}

35/94



So much control with {tmap}!

tm_text(text, size = 1, col = NA, root = 3, clustering = FAL
size.lim = NA, sizes.legend = NULL, sizes.legend.labels =
sizes.legend.text = "Abc", n = 5, style = ifelse(is.null(k
"pretty", "fixed"), breaks = NULL, interval.closure = "lef
palette = NULL, labels = NULL, labels.text = NA, midpoint
stretch.palette = TRUE, contrast = NA, colorNA = NA,
textNA = "Missing", showNA = NA, colorNULL = NA, fontface
fontfamily = NA, alpha = NA, case = NA, shadow = FALSE,
bg.color = NA, bg.alpha = NA, size.lowerbound = 0.4,
print.tiny = FALSE, scale = 1, auto.placement = FALSE,
remove.overlap = FALSE, along.lines = FALSE,
overwrite.lines = FALSE, just = "center", xmod = 0, ymod =
title.size = NA, title.col = NA, legend.size.show = TRUE,
legend.col.show = TRUE, legend.format = list(),
legend.size.is.portrait = FALSE, legend.col.is.portrait =
legend.size.reverse = FALSE, legend.col.reverse = FALSE,
legend.hist = FALSE, legend.hist.title = NA, legend.size.z
legend.col.z = NA, legend.hist.z = NA, group = NA,
auto.palette.mapping = NULL, max.categories = NULL)
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{tmap} syntax is similar to {ggplot2}

# data set up layer
tm_shape(boroughs) + tm_polygons()
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A short-cut gtm ()

Instead of plot () I often use this

gtm(boroughs)
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Add multiple layers based on one input

tm_shape(boroughs) +
tm_polygons() +
tm_dots(size = 2) +
tm_text("BoroName", col = "red", size = 1.5)
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Or multiple different layers using multiple
shapes

tm_shape(boroughs) + tm_borders() +
tm_shape(schools) + tm_dots(size = 0.25)

40 /94



You can also save parts of the map and reuse

mymap <- tm_shape(boroughs) + tm_polygons()

mymap + tm_dots(size = 2) +
tm_text("BoroName", col = "red")
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Choropleth (color-coded map) based on a
variable. So easy!

tm_shape(boroughs) + tm_polygons("Shape_Area")
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Or show an attribute with tm_symbols ()

tm_shape(boroughs) + tm_borders() +
tm_symbols ("Shape_Area", scale = 2)
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Plot multiple variables at once

tm_shape(boroughs) + tm_polygons(c("Shape_Area", "BoroName'")
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tm_shape () can accept vector or raster
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Single-band raster with tm_raster ()

tm_shape(canopy) + tm_raster()
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A multi-layer raster with tm_rgb ()

tm_shape(manhattan) + tm_rgb()
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\lector and raster

tm_shape(manhattan) + tm_rgb()+
tm_shape(boroughs) + tm_borders(col = "white", lwd = 2)
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Include a basemap in your map
Use a function from the companion package, {tmaptools}

osmtiles <- tmaptools::read_osm(boroughs,
type="stamen-terrain")
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Include a basemap in your map

tm_shape(osmtiles) + tm_raster() +
tm_shape(boroughs) +
tm_borders(lwd = 2, col = "yellow")
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Map extent is driven by the ‘master’

 First shape is master by default

e in tm_shape() can use is.master = TRUE
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Here is the default (extent based on raster)

tm_shape(canopy) +
tm_raster(title = "(percent canopy)", alpha = 0.75) +
tm_shape(boroughs) + tm_borders(lwd = 2, col = "blue")
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Force the extent to be the polygon borders

tm_shape(canopy) +
tm_raster(title = "(percent canopy)", alpha = 0.75) +
tm_shape(boroughs, is.master = TRUE) + tm_borders(lwd = 2,
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Using color palettes in tmap

o viridis

e RColorBrewer
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https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html
http://colorbrewer2.org/#type=sequential&scheme=BuGn&n=3

palette_explorer () is great

tmaptools: :palette_explorer()
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Use a palette with the pal argument

tm_shape(neighborhoods) +
tm_polygons("shape_area", n = 5, pal = "Greens")

shape_area

|||||
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Use - to reverse the palette

tm_shape(neighborhoods) +
tm_polygons("shape_area", n = 5, pal = "-Greens")
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Alter the map layout with tm_Tlayout ()

tm_shape(neighborhoods) +
tm_polygons("shape_area", n = 5, pal = "Greens") +
tm_layout(legend.show = FALSE, frame = FALSE)
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Save your maps with tmap_save ()

mymap <- tm_shape(boroughs) + tm_polygons()
tmap_save(mymap, "mymap.png")

59/94



It's easy to include more than one map inan
image with tmap_arrange ()

# Create three maps

ml <- tm_shape(boroughs) + tm_polygons()

m2 <- tm_shape(neighborhoods) + tm_polygons()
m3 <- tm_shape(schools) + tm_dots(size = 0.25)
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Arrange them on one image

tmap_arrange(ml, m2, m3, nrow = 1)
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So many great other functions to explore

e tmap_save()

e tm_layout()

e tm_style()

e tm_facets()

e tm_animation()
e tm_scale_bar ()

e tm_compass()
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As promised earlier, three slides on mapping
with {ggplot2}
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{ggplot2} has a special layer for {sf} objects

e geom_sT()
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With geom_sf () no need to specify x and y

e Unlike geom_1line(), geom_points() etc
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To create a choropleth use aes () with the fill
argument

library(ggplot2)

ggplot() +
geom_sf (data
geom_sf (data

boroughs, aes(fill = BoroCode)) +
schools, color = "purple")

40.9°N -

BoroCode

5
4
3
2
1

40.8°N -
40.7°N -

40.6°N -

40.5°N -

74.2°W74.1°W 74°W 73.9°W73.8°W73.7°W

66 /94



You can also make nice maps with {ggplot2

Switzerland's regional income (in-)equality

Average yearly income and income (in-)equality in Swiss municipalities, 2015

Grey areas mean
low income and
low inequality

Blue areas mean
high income and
low inequality

Violet areas mean
high income and
high inequality

Red areas mean
low income and
high inequality

Higher income —
@,

Higher inequality —

arssnbchr/bivariate-map

Source: Timo Grossenbacher
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https://timogrossenbacher.ch/2019/04/bivariate-maps-with-ggplot2-and-sf/

Keep in mind, there are other packages worth
exploring
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uick example of geogrid
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https.//github.com/jbaileyh/geogrid
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https://github.com/jbaileyh/geogrid

Hillshading with rayshader

https://github.com/tylermorganwall/rayshader
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https://github.com/tylermorganwall/rayshader

Cartographic representations with
{cartography}

Ny = &
.8 N = 9

https.//github.com/riatelab/cartography
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https://github.com/riatelab/cartography

open_exercise(3) and work on activity 1-9
then stop
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Interactive maps
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There are two packages | use for interactive
maps

e {mapview} (for a quick interactive look)
e {tmap} (for a more polished interactive map)
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Why not RStudio's {leaflet}

e Main reason is it requires layers to be unprojected (we
will discuss)

e There are work-arounds like leafletCRS()

e But {tmap} and {mapview} do a great job
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Both {tmap} and {mapview} also use the Leaflet
JavaScript API
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Since we're already talking about {tmap} let's
start with {tmap}
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Remember this static {tmap} from earlier?
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Use tmap_mode () to change from static to
interactive

tmap_mode("plot") # default
my_map

'''''''''''''''''

eeeeee

BBBBBBBBBB
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So easy to make it interactive

tmap_mode("view")
my_map
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Running tmap_mode () with no argument
will give the current mode

tmap_mode ()
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tmap can do side-by-side linked plots

tmap_mode ("view")
tm_shape(boroughs) +
tm_polygons(c("pop2018", "pop_change"),
palette = "Oranges")

pop2018

+ pop_change

0 to 500,000 1.5102.0

il 500,000 to 1,000,000 = : 20to25
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S I 1,500,000 to 2,000,000 & I 30t0o35
g . 2,000,000 to 2,500,000 >

2,500,000 to 3,000,000

Leafiet | Tiles © Esri — Esri, DeLorme, NAVTEQ Leaflet | Tiles & Esri — Esri, DeLorme, NAVTEQ
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Save your interactive tmap with
tmap_save()

mymap <- tm_shape(boroughs) + tm_polygons()
tmap_save(mymap, "mymap.html")

\ 4 - mymap_files
» B htmiwidgets-1.3
B - jquery-1.12.4
» B leaflet-1.3.1

b - leaflet-binding-2.0.2
> - leaflet-providers-1.1.17
»> - leaflet-providers-plugin-2.0.2

> - leafletfix-1.0.0

> - Proj4Leaflet-1.0.1

2 - rstudio_leaflet-1.3.1

. mymap.html
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{mapview}
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Great for a quick interactive ook at data

library(mapview)
mapview(boroughs)

boroughs
. boroughs
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Like {tmap}, a lot of customization allowed

mapview(x, map = NULL,
maxpixels = mapviewGetOption("mapview.maxpixels"),
col.regions = mapviewGetOption("raster.palette") (256), at
na.color = mapviewGetOption("na.color"), use.layer.names =
values = NULL, map.types = mapviewGetOption("basemaps"),
alpha.regions = 0.8, legend = mapviewGetOption("legend"),
legend.opacity = 1, trim = TRUE,
verbose = mapviewGetOption("verbose"), layer.name = NULL,
homebutton = TRUE, native.crs = FALSE, method = c("bilinec
"ngb"), label = TRUE, query.type = c("mousemove", "click")
query.digits, query.position = "topright", query.prefix =
viewer.suppress = FALSE, «..)
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And easier than...

tmap_mode("view")
tm_shape(boroughs) + tm_polygons()
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Multiple [ayers in one map with 1ist ()

library(mapview)
mapview(list(boroughs, schools))

+ boroughs
Mo B boroughs

schools

B schools

Leaflet | © OpenStreeiMap © CartoDB
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Alternative syntax for multiple layers

mapview(boroughs) + mapview(schools)

mapview(boroughs) + schools
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Color-code based on an attribute use the zcol
argument

mapview(boroughs, zcol = "Shape_Area")

Y
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Also allows rasters

mapview(canopy, alpha.regions =
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Saving your mapview interactive map with
mapshot
Output is very similar to {tmap} (html file and folder)

mymap <- mapview(boroughs)
mapshot (mymap, "mymap.html")
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For both static and interactive maps

e You can include in R markdown

e You can include in shiny application

e If you save with tmap_save() or mapshot() you can
upload the files directly to a server
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open_exercise(3) and finish
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