Visualizing Spatial Data

(static and interactive maps)

R has great map-making functionality!

2 /94

This map was created in R

Switzerland's regional income (in-)equality

Average yearly income and income (in-)equality in Swiss municipalities, 2015

Grey areas mean
low income and
low inequality

Blue areas mean
high income and
low inequality

Violet areas mean
high income and
high inequality

Red areas mean
low income and
high inequality

Higher income —s
®,

Higher inequality —s

ithub.com/arssnbchr/bivariate-maps-ggplot2-sf
er (@grssnbchr), Angelo Zehr (
rt BFS and swisstopo; Data: ES

Map CC-BY-5A; C

Source: Timo Grossenbacher

3/94

https://timogrossenbacher.ch/2019/04/bivariate-maps-with-ggplot2-and-sf/

This map was created in R

London Cycle Hire Journeys

Thicker, yellower lines mean more journeys

Source: spatial.ly

4 /94

http://spatial.ly/2012/02/great-maps-ggplot2/

This map was created in R

Source: rayshader

5/94

https://github.com/tylermorganwall/rayshader

What packages should you use?

6/94

There are dozens of mapping-related packages
inR

e But only a few are all-purpose

7 /94

All-purpose static mapping

e The plot() function
e {tmap}
e {ggplot2} (we won't cover {ggplot2})

8 /94

All-purpose interactive mapping

e {tmap}
e {mapview}
e {leaflet} (we won't cover {leaflet})

9/94

A lot of great packages for niche mapping
needs

e {rayshader}

e {geogrid}

e {globe}

e {linemap}

e {cartogram}
e {cartography}
e {mapedit}

e {rasterVis}

10/94

Static mapping

11/94

Take home messages

e Tuse plot() for a quick look at data
e Tuse {tmap} for everything else

e {tmap} has an insane amount of customization
allowed, we will only touch the surface

12 /94

Why not ggplot2?

e Ilove ggplot2 and use it every day

e ButI find making maps significantly easier in tmap
o Can do almost anything in tmap

o Easy to include just fill, just borders, etc
o Interactive views
o etc...

13/94

But | will show a ggplot-map at the end of this
section

14 /94

plot()

15/94

Yes plot () is not super exciting

16 /94

But plot () is great for a quick look at your
data

17 /94

plot () has methods for vector and raster
data

The packages need to be loaded to plot vector and raster
data

18 /94

Some setup: load packages
No need to type with me, you'll practice in the exercise

library(sf) # read vectors
library(raster) # read rasters
library(tmap) # mapping

19/94

Some setup: read in NYC data

boroughs <- read_sf("boroughs.gpkg")
schools <- read_sf("schools.shp")
canopy <- raster("canopy.grd")

20 /94

With vectors the default is to plot the
attributes

plot(boroughs)

21/94

| don't really like this default

22 /94

You can plot a single attribute

plot(boroughs['Shape_Area'], main = "Area",
pal = rev(heat.colors(5)))

23 /94

For a quick look at vectors, | often just want the
geometry

e You can extract just the geometry with st_geometry ()

e Then call plot() on the output

24 /94

st_geometry () and then plot

st_geometry(boroughs) %>% plot()

25/94

Or wrap the two functions

plot(st_geometry(boroughs))

26 /94

Try to memorize this concept/code

st_geometry(boroughs) %>% plot()

plot(st_geometry(boroughs))

27 [94

To combine layers with plot () use add =
TRUE

plot(st_geometry(boroughs))
plot(st_geometry(schools), add = TRUE,
pch = 16, col = "red", cex = 0.5)

28 /94

(areful with add = TRUE, only works with
st_geometry ()

This won't work!
plot(boroughs)
plot(schools, add = TRUE)

29 /94

Easy to use plot () with rasters

plot(canopy) # a single band raster

300000
1

250000
1

200000
1

40

20

100000
L
-

850000 900000 950000 1000000 1050000 1100000 1150000

30/94

If your raster has multiple layers (like an
image) ...
plot () maps each layer separately

plot(manhattan)

mmmmmmmmm

:_,

aaaaaaaaaaa

31/94

If your raster has a red, green and blue layer
(like an image)
You can plot them together...

plotRGB(manhattan)

32 /94

Combine rasters and vectors with plot ()

plot(canopy)
plot(st_geometry(schools), add = T,
pch = 16, col = "red", cex = 0.5)

300000
1

250000

200000

150000

100000

T T T
850000 900000 950000 1000000 1050000 1100000 1150000

33/94

For more sophisticated and fun static maps |
use {tmap}

34 /94

{tmap}

35/94

So much control with {tmap}!

tm_text(text, size = 1, col = NA, root = 3, clustering = FAL
size.lim = NA, sizes.legend = NULL, sizes.legend.labels =
sizes.legend.text = "Abc", n = 5, style = ifelse(is.null(k
"pretty", "fixed"), breaks = NULL, interval.closure = "lef
palette = NULL, labels = NULL, labels.text = NA, midpoint
stretch.palette = TRUE, contrast = NA, colorNA = NA,
textNA = "Missing", showNA = NA, colorNULL = NA, fontface
fontfamily = NA, alpha = NA, case = NA, shadow = FALSE,
bg.color = NA, bg.alpha = NA, size.lowerbound = 0.4,
print.tiny = FALSE, scale = 1, auto.placement = FALSE,
remove.overlap = FALSE, along.lines = FALSE,
overwrite.lines = FALSE, just = "center", xmod = 0, ymod =
title.size = NA, title.col = NA, legend.size.show = TRUE,
legend.col.show = TRUE, legend.format = list(),
legend.size.is.portrait = FALSE, legend.col.is.portrait =
legend.size.reverse = FALSE, legend.col.reverse = FALSE,
legend.hist = FALSE, legend.hist.title = NA, legend.size.z
legend.col.z = NA, legend.hist.z = NA, group = NA,
auto.palette.mapping = NULL, max.categories = NULL)

36/94

{tmap} syntax is similar to {ggplot2}

data set up layer
tm_shape(boroughs) + tm_polygons()

37 /94

A short-cut gtm ()

Instead of plot () I often use this

gtm(boroughs)

38 /94

Add multiple layers based on one input

tm_shape(boroughs) +
tm_polygons() +
tm_dots(size = 2) +
tm_text("BoroName", col = "red", size = 1.5)

39/94

Or multiple different layers using multiple
shapes

tm_shape(boroughs) + tm_borders() +
tm_shape(schools) + tm_dots(size = 0.25)

40 /94

You can also save parts of the map and reuse

mymap <- tm_shape(boroughs) + tm_polygons()

mymap + tm_dots(size = 2) +
tm_text("BoroName", col = "red")

41/94

Choropleth (color-coded map) based on a
variable. So easy!

tm_shape(boroughs) + tm_polygons("Shape_Area")

aaaaaaaaa

g &8 8
i i

£ 88 8¢%
i3 33

e o amElh
|]
B |
W
N
/
& ;
Gr=e* &
N 4 :
-
o« >
5 r-
\ ,r_;__,/
)
P
{
N

42 /94

Or show an attribute with tm_symbols ()

tm_shape(boroughs) + tm_borders() +
tm_symbols ("Shape_Area", scale = 2)

Shape_Area -
c o000 "
500 min 1,000 min 1,500 min 2,500 min 3,500 min 3
@
/ (%
/ Y W
;S @)
{
L ——
: L Ny
A TN O
1 J

43 /94

Plot multiple variables at once

tm_shape(boroughs) + tm_polygons(c("Shape_Area", "BoroName'")

44 [94

tm_shape () can accept vector or raster

45 /94

Single-band raster with tm_raster ()

tm_shape(canopy) + tm_raster()

CAN_N39Wp72 S 0n
''''' b, PR
y do 2 G .
§ g &
20 A 11 f
X s }; = L rp Sof
L e /A el ¥l
SN i, ¥/ s ; 4
b BNy, | 4 “ T
1 e |
,"..,' i W
L84y | a
At 2
[-2 § "\
b ' *
§ 3
x
it X A
e
§:5
: a R’_&*‘
? 8 A _.
&2
3
.r'

46 [/ 94

A multi-layer raster with tm_rgb ()

tm_shape(manhattan) + tm_rgb()

47 [94

\lector and raster

tm_shape(manhattan) + tm_rgb()+
tm_shape(boroughs) + tm_borders(col = "white", lwd = 2)

48 [94

Include a basemap in your map
Use a function from the companion package, {tmaptools}

osmtiles <- tmaptools::read_osm(boroughs,
type="stamen-terrain")

49 /94

Include a basemap in your map

tm_shape(osmtiles) + tm_raster() +
tm_shape(boroughs) +
tm_borders(lwd = 2, col = "yellow")

50/94

Map extent is driven by the ‘master’

 First shape is master by default

e in tm_shape() can use is.master = TRUE

51/94

Here is the default (extent based on raster)

tm_shape(canopy) +
tm_raster(title = "(percent canopy)", alpha = 0.75) +
tm_shape(boroughs) + tm_borders(lwd = 2, col = "blue")

52 /94

Force the extent to be the polygon borders

tm_shape(canopy) +
tm_raster(title = "(percent canopy)", alpha = 0.75) +
tm_shape(boroughs, is.master = TRUE) + tm_borders(lwd = 2,

53/94

Using color palettes in tmap

o viridis

e RColorBrewer

54 /94

https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html
http://colorbrewer2.org/#type=sequential&scheme=BuGn&n=3

palette_explorer () is great

tmaptools: :palette_explorer()

ene ~/git-repos{workshop-r-spatial-slides - Shiny
http: /f127.0.0.1:6140 Open in Browser %, Publish =
1 2 3 4
Blues | I M
BuGn [N N]
BuPy | [T el
Gadu | L [—— |
Brewer Sequential Greens | I |
Greys | [e
Number of cobors Contrast range Oranges I T
3 B . OrRd I —
[— B Aot i
A FuBuGn
PuRd I — |
Purples [—— |
RdPy I — e
Ruds [T
vion [[——— |
YiGnBu [N]
viorr | [T e
iowRa | I [—

3
"
o

get_brewer_pal{"Blues",

7
Brower Categorical hocert T T ———
carkz [R e I
Number of colors @ sioich Pared [N I W
Pastel1 | I 1 I 1 I [I
3 B 0 B I i i T 1]
'asteld
m— st N BT
Set2
T S " I) — — —
get_brewer_pal({“Accent”, n = 8)
B 1 4 5] 7 i 9
rewer Divergin sec N
rging Pivc [E— |
Number of cobors Contrast range eren IR j—]
5 Pulr |
? 2@ Avomane Adou T — |
oa—— recy [T . — |
: ravieu I |
Rravicn I B
Spectral [T I j— |
get_brewer_pal{“BrBG", n = 9)
: 1 4 7 10 11 12 13 14 1 7 18 19 20
Viridis Sequential viridia s |
PRI Ay Cinwatt i magma]
plasma]
3 20 (o] (1] inferno]
CRCEI o -]

wviridisbite: iviridis{2e)

55/94

Use a palette with the pal argument

tm_shape(neighborhoods) +
tm_polygons("shape_area", n = 5, pal = "Greens")

shape_area

|||||

56/94

Use - to reverse the palette

tm_shape(neighborhoods) +
tm_polygons("shape_area", n = 5, pal = "-Greens")

57 /94

Alter the map layout with tm_Tlayout ()

tm_shape(neighborhoods) +
tm_polygons("shape_area", n = 5, pal = "Greens") +
tm_layout(legend.show = FALSE, frame = FALSE)

58/94

Save your maps with tmap_save ()

mymap <- tm_shape(boroughs) + tm_polygons()
tmap_save(mymap, "mymap.png")

59/94

It's easy to include more than one map inan
image with tmap_arrange ()

Create three maps

ml <- tm_shape(boroughs) + tm_polygons()

m2 <- tm_shape(neighborhoods) + tm_polygons()
m3 <- tm_shape(schools) + tm_dots(size = 0.25)

60 /94

Arrange them on one image

tmap_arrange(ml, m2, m3, nrow = 1)

61/94

So many great other functions to explore

e tmap_save()

e tm_layout()

e tm_style()

e tm_facets()

e tm_animation()
e tm_scale_bar ()

e tm_compass()

62 /94

As promised earlier, three slides on mapping
with {ggplot2}

63 /94

{ggplot2} has a special layer for {sf} objects

e geom_sT()

64 /94

With geom_sf () no need to specify x and y

e Unlike geom_1line(), geom_points() etc

65/94

To create a choropleth use aes () with the fill
argument

library(ggplot2)

ggplot() +
geom_sf (data
geom_sf (data

boroughs, aes(fill = BoroCode)) +
schools, color = "purple")

40.9°N -

BoroCode

5
4
3
2
1

40.8°N -
40.7°N -

40.6°N -

40.5°N -

74.2°W74.1°W 74°W 73.9°W73.8°W73.7°W

66 /94

You can also make nice maps with {ggplot2

Switzerland's regional income (in-)equality

Average yearly income and income (in-)equality in Swiss municipalities, 2015

Grey areas mean
low income and
low inequality

Blue areas mean
high income and
low inequality

Violet areas mean
high income and
high inequality

Red areas mean
low income and
high inequality

Higher income —
@,

Higher inequality —

arssnbchr/bivariate-map

Source: Timo Grossenbacher

67 /94

https://timogrossenbacher.ch/2019/04/bivariate-maps-with-ggplot2-and-sf/

Keep in mind, there are other packages worth
exploring

68 /94

uick example of geogrid

; Sc
Ho'ﬂﬂich Wahamblewi
/ i HECTARES
!r.nu 5,000
5,000 to 10,000
10,000 1o 15,000
15,000 1o 20,000

HECTARES
005,000
5,000 to 10,000
10,000 1o 15,000
15,000 to 20,000
Barn Hari Enfi
Harr BrenCamd Isli k Walt Redb
Eali Kens West ToweNewh Bark
Houn RichHamnWand Sout City Bexl
HECTARES
0'to 5,000 King |MertLamb Lewi Gree
5,000 1o 10,000
10,000 to 15,000
15,000 1o 20,000

https.//github.com/jbaileyh/geogrid
69 /94

https://github.com/jbaileyh/geogrid

Hillshading with rayshader

https://github.com/tylermorganwall/rayshader

70 /94

https://github.com/tylermorganwall/rayshader

Cartographic representations with
{cartography}

Ny = &
.8 N = 9

https.//github.com/riatelab/cartography

71 /94

https://github.com/riatelab/cartography

open_exercise(3) and work on activity 1-9
then stop

72 [94

Interactive maps

73 /94

There are two packages | use for interactive
maps

e {mapview} (for a quick interactive look)
e {tmap} (for a more polished interactive map)

74 [94

Why not RStudio's {leaflet}

e Main reason is it requires layers to be unprojected (we
will discuss)

e There are work-arounds like leafletCRS()

e But {tmap} and {mapview} do a great job

75 /94

Both {tmap} and {mapview} also use the Leaflet
JavaScript API

Melbaurne
Y
b Manogement Palm Bay
Na Areo N
~ N
Threée Lakes \
.'(.l.'r!‘i’r[l‘ \
Managerment

Areg \

KisSimmes

Melbourne

Palm Bay

76 / 94

Since we're already talking about {tmap} let's
start with {tmap}

77 [94

Remember this static {tmap} from earlier?

\\\\\\\\\\\\

Queens
BBBBBBBBB

Staterelsland

78 / 94

Use tmap_mode () to change from static to
interactive

tmap_mode("plot") # default
my_map

'''''''''''''''''

eeeeee

BBBBBBBBBB

79 /94

So easy to make it interactive

tmap_mode("view")
my_map

80 /94

Running tmap_mode () with no argument
will give the current mode

tmap_mode ()

81/94

tmap can do side-by-side linked plots

tmap_mode ("view")
tm_shape(boroughs) +
tm_polygons(c("pop2018", "pop_change"),
palette = "Oranges")

pop2018

+ pop_change

0 to 500,000 1.5102.0

il 500,000 to 1,000,000 = : 20to25

) 1,000,000 to 1,500,000 25103.0

S I 1,500,000 to 2,000,000 & I 30t0o35
g . 2,000,000 to 2,500,000 >

2,500,000 to 3,000,000

Leafiet | Tiles © Esri — Esri, DeLorme, NAVTEQ Leaflet | Tiles & Esri — Esri, DeLorme, NAVTEQ

82 /94

Save your interactive tmap with
tmap_save()

mymap <- tm_shape(boroughs) + tm_polygons()
tmap_save(mymap, "mymap.html")

\ 4 - mymap_files
» B htmiwidgets-1.3
B - jquery-1.12.4
» B leaflet-1.3.1

b - leaflet-binding-2.0.2
> - leaflet-providers-1.1.17
»> - leaflet-providers-plugin-2.0.2

> - leafletfix-1.0.0

> - Proj4Leaflet-1.0.1

2 - rstudio_leaflet-1.3.1

. mymap.html

83/94

{mapview}

84 /94

Great for a quick interactive ook at data

library(mapview)
mapview(boroughs)

boroughs
. boroughs

85 /94

Like {tmap}, a lot of customization allowed

mapview(x, map = NULL,
maxpixels = mapviewGetOption("mapview.maxpixels"),
col.regions = mapviewGetOption("raster.palette") (256), at
na.color = mapviewGetOption("na.color"), use.layer.names =
values = NULL, map.types = mapviewGetOption("basemaps"),
alpha.regions = 0.8, legend = mapviewGetOption("legend"),
legend.opacity = 1, trim = TRUE,
verbose = mapviewGetOption("verbose"), layer.name = NULL,
homebutton = TRUE, native.crs = FALSE, method = c("bilinec
"ngb"), label = TRUE, query.type = c("mousemove", "click")
query.digits, query.position = "topright", query.prefix =
viewer.suppress = FALSE, «..)

86 /94

And easier than...

tmap_mode("view")
tm_shape(boroughs) + tm_polygons()

87 /94

Multiple [ayers in one map with 1ist ()

library(mapview)
mapview(list(boroughs, schools))

+ boroughs
Mo B boroughs

schools

B schools

Leaflet | © OpenStreeiMap © CartoDB

88 /94

Alternative syntax for multiple layers

mapview(boroughs) + mapview(schools)

mapview(boroughs) + schools

89 /94

Color-code based on an attribute use the zcol
argument

mapview(boroughs, zcol = "Shape_Area")

Y

90 /94

Also allows rasters

mapview(canopy, alpha.regions =

=+

Sparta

e

V Dover

e — unt Olive

Hilisborough

Old Bridge

Spring Valley
Mahwah

Middletown

Long Branch

NOrwWaix

STAMFORD
Greenwich

Freaport

West Babylon
Lindenhurst

Islip

91/94

Saving your mapview interactive map with
mapshot
Output is very similar to {tmap} (html file and folder)

mymap <- mapview(boroughs)
mapshot (mymap, "mymap.html")

92 /94

For both static and interactive maps

e You can include in R markdown

e You can include in shiny application

e If you save with tmap_save() or mapshot() you can
upload the files directly to a server

93 /94

open_exercise(3) and finish

94 /94

