
Geoprocessing for
Vectors and Rasters



Putting all the pieces together for the fun stu�
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Meaningfully manipulating your geospatial
data
A three-part section:

Single vector layers

Multiple vector layers

Raster layers
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There are several dozen functions in each
category
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The plan
Demonstrate some of the most important functions
using a real-world, mini-analysis

Provide a quick demonstration of important functions
that are not included in the mini-analysis
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Our mini-analysis
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What in�uences air quality in New York City?
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A common air quality modeling approach
Collect measurements at air monitors

Compute road density, landuse and other variables
near each monitor

Look at the relationship between concentrations and
road density etc.
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Start with the air quality monitors

Image source
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https://nyc-ehs.net/besp-report/web/nyccas


New York City has one of the largest urban air
monitoring networks in the world
Data from the NYC Dept. of Health, New York City
Community Air Survey (NYCCAS).

More detail can be found here.

10 / 187

https://www1.nyc.gov/site/doh/data/data-sets/air-quality-nyc-community-air-survey.page


Take a look at our air quality data
PM2.5 refers to particles in the air (soot)

monitors <- read_sf("monitors.gpkg")

library(dplyr)
glimpse(monitors)

## Observations: 64
## Variables: 4
## $ site_id     <dbl> 228, 952, 2269, 2496, 2596, 2818…
## $ reference   <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ pm25_annual <dbl> 6.473097, 6.591441, 6.107921, 5.…
## $ geom        <POINT [US_survey_foot]> POINT (918300…
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Map the air quality data
tm_shape(monitors) + 
  tm_dots("pm25_annual", size = 0.5)
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Let's add a little context by mapping the
counties with the monitors
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Read the county/borough data directly from
nyc.gov
counties <- read_sf("http://bit.ly/39MxcnC")

Data is here.
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https://www1.nyc.gov/site/planning/data-maps/open-data/districts-download-metadata.page


Here are our counties (also referred to as
"boroughs")
tm_shape(counties) + tm_polygons() + 
  tm_text("BoroName", size = 1)
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Map the air quality data and the counties
together
tm_shape(counties) + tm_borders() + 
  tm_shape(monitors) + tm_dots("pm25_annual", size = 0.5)
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By the way, that last map worked but why
doesn't this?
plot(st_geometry(counties))
plot(st_geometry(monitors), add = TRUE)



CRS mismatch!
st_crs(monitors)

## Coordinate Reference System:
##   No EPSG code
##   proj4string: "+proj=lcc +lat_1=41.03333333333333 +lat_2=40.6666

st_crs(counties)

## Coordinate Reference System:
##   EPSG: 4326 
##   proj4string: "+proj=longlat +datum=WGS84 +no_defs"
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We will use a consistent, projected CRS
Long Island State Plane, EPSG 2908

counties <- counties %>% 
  st_transform(crs = st_crs(monitors))
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Try the map again
plot(st_geometry(counties))
plot(st_geometry(monitors), add = TRUE)
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Introducing our candidate "predictor" variables
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Road layer lines
roads <- read_sf("roads.gpkg")

Data from here.
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https://www.fhwa.dot.gov/policyinformation/hpms/shapefiles.cfm


Road map
tm_shape(counties) + tm_borders(col = "red") +
  tm_shape(roads) + tm_lines(col = "grey")
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Census data (population polygons)
population <- read_sf("population.shp")

Data collected with {tidycensus}.
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Census data map
tm_shape(population) + 
  tm_polygons("population", border.col = "grey", lwd = 0.25)
  tm_shape(counties, is.master = TRUE) + 
  tm_borders(col = "red")
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Land use raster
landuse <- raster("landuse.tif")

Data collected using {FedData}.
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Land use raster map
plot(landuse)
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Canopy raster
canopy <- raster("canopy.tif")

Data collected using {FedData}.
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Canopy raster map
plot(canopy)
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Goal: characterize areas around monitors
Compute road density

Compute distance to the nearest road

Compute population

Compute the amount of "high intensity" developed
land

Compute average tree canopy
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Single-layer geoprocessing for vectors
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Examples of available functions
st_union()
st_centroid()
st_convex_hull()
st_buffer()
st_cast()
st_simplify()
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Favorites that are not part of our mini-
analysis...
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Get the centroids with st_centroid()
cent <- st_centroid(counties)

tm_shape(counties) + tm_borders() +
  tm_shape(cent) + tm_dots(size = 0.5, col = "red")
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Put a "hull" around geometries with
st_convex_hull()
hull <- st_convex_hull(counties)

tm_shape(counties) + tm_polygons() + tm_shape(hull) + 
  tm_polygons("BoroName", alpha = 0.3) + tm_layout(frame = F



Combine multiple geometries into one
counties_as_one <- st_union(counties)

counties_as_one

## Geometry set for 1 feature 
## geometry type:  MULTIPOLYGON
## dimension:      XY
## bbox:           xmin: 913174.7 ymin: 120124.9 xmax: 1067382 ymax: 
## epsg (SRID):    NA
## proj4string:    +proj=lcc +lat_1=41.03333333333333 +lat_2=40.6666
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Reapply hull
hull <- st_convex_hull(counties_as_one)

tm_shape(counties) + tm_polygons() + tm_shape(hull) + 
  tm_borders(col = "orange") + tm_layout(frame = FALSE)
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For the analysis of air quality the function we
need is st_buffer()
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Create a 500 meter bu�er around the monitors
Then compute, for example, road density within the
buffer
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The basic syntax is
st_buffer(geo, distance)
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The distance units come from the geography
CRS
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In our case this is feet
st_crs(monitors)

## proj4string: "+proj=lcc +lat_1=41.03333333333333
+lat_2=40.66666666666666 +lat_0=40.16666666666666
+lon_0=-74 +x_0=300000 +y_0=0 +ellps=GRS80
+towgs84=0,0,0,0,0,0,0 +units=us-ft +no_defs"

You can access this directly with:
sf:::crs_parameters(st_crs(schools))$ud_unit
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To get meters from feet multiple by 3.28
monitor_buffers <- st_buffer(monitors, 500 * 3.28)
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Our monitor bu�ers
tm_shape(counties) + tm_borders() +
  tm_shape(monitor_buffers) + tm_polygons(col = "red") + 
  tm_shape(monitors) + tm_dots(size = 0.1, col = "yellow")
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By the way, in terms of naming objects for this
section
Final tables will be prefixed with monitor_ (e.g.,
monitor_roads, monitor_canopy etc)
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open_exercise(7) and do activities 1-3 only
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Geoprocessing with multiple vector layers
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Tons of great functions for geoprocessing with
two layers
st_join()
st_distance()
st_nearest_feature()
st_nearest_points()
st_combine()
st_intersection()
st_union()
st_crop()
st_intersects()
st_contains()
st_touches()
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Some of these functions return a geometry
st_join()
st_nearest_points()
st_combine()
st_intersection()
st_union()
st_crop()
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And some return an object describing
relationships
st_intersects()
st_contains()
st_touches()
st_crosses()
st_distance()
st_nearest_feature()
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Examples of functions that return a geometry
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For illustration, start with two rectangles
plot(polys, border = "grey")
plot(st_geometry(poly1), add = TRUE, border = "red")
plot(st_geometry(poly2), add = TRUE, border = "blue")
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Combine multiple geometries into one,
dissolved, geometry with st_union()
union <- st_union(poly1, poly2)

plot(polys, border = "grey")
plot(st_geometry(union), add = TRUE, col = "red", lwd = 2)
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Compute the intersection between geometries
with st_intersection()
intersection <- st_intersection(poly1, poly2)

plot(polys, border = "grey")
plot(st_geometry(intersection), add = TRUE, col = "red")
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Examples of functions that return an object
describing relationships
st_intersects()
st_contains()
st_touches()
st_crosses()
st_distance()
st_nearest_feature()
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You can �nd visual descriptions of the
relationships...
Here or here.

http://postgis.net/workshops/postgis-intro/spatial_relationships.html
https://cran.r-project.org/web/packages/sf/vignettes/sf3.html


For our examples, we'll use two objects
An {sf} object with four polygons (poly)

An {sf} object with one line (line)
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Most of these functions can return either a ...
A sparse index list or

A dense logical matrix
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These are called "binary logical operations"
st_intersects()
st_touches()
st_crosses()
st_within()
st_contains()
st_overlaps()
# And more!
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Back to our example geometries

60 / 187



Test if features cross with st_crosses()
st_crosses(line, poly)

## Sparse geometry binary predicate list of length 1, where the pred
##  1: 1, 2, 4

st_crosses(poly, line)

## Sparse geometry binary predicate list of length 4, where the pred
##  1: 1
##  2: 1
##  3: (empty)
##  4: 1
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Test if the features intersect with
st_intersects()
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By the way, note...
st_intersection() returns a geometry

st_intersects() returns an object of relationships
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Test if the features intersect with
st_intersects()
st_intersects(line, poly)

## Sparse geometry binary predicate list of length 1, where the pred
##  1: 1, 2, 4

st_intersects(poly, line)

## Sparse geometry binary predicate list of length 4, where the pred
##  1: 1
##  2: 1
##  3: (empty)
##  4: 1
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Let's make this a little more interesting with
the roads and population
road_pop_index <- st_intersects(roads, population)
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The default for these functions is to return a
sparse list
road_pop_index

## Sparse geometry binary predicate list of length 21464, where the 
## first 10 elements:
##  1: 6454, 6457, 6458, 6467, 6468
##  2: 1526
##  3: 968
##  4: 1999
##  5: 3195
##  6: 1526
##  7: 6368
##  8: 1941, 1999
##  9: 4923
##  10: 3095, 3222

66 / 187



The list length is the same as the number of
features (in the �rst object)
nrow(roads)

## [1] 21464

length(road_pop_index)

## [1] 21464
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You can extract pieces like an R list
# Results for polygon 1
road_pop_index[[1]]

## [1] 6454 6457 6458 6467 6468

# Results for polygon 3
road_pop_index[[3]]

## [1] 968
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Use lengths() to count how many
intersections in this case
Zero means no intersection
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For example...
number_of_intersections <- lengths(road_pop_index)

head(number_of_intersections)

## [1] 5 1 1 1 1 1
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Are there roads that don't intersect the census
polygons?
roads_no_intersect <- filter(roads, 
                             number_of_intersections == 0)

nrow(roads_no_intersect)

## [1] 38
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Where are these roads that don't intersect?
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If you prefer, you can return dense logical
matrix from binary logical operations
mat <- st_intersects(poly, line, sparse = FALSE)
mat

##       [,1]
## [1,]  TRUE
## [2,]  TRUE
## [3,] FALSE
## [4,]  TRUE
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Back to our mini-analysis
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How might we compute road density in the
monitor bu�ers?

75 / 187



Compute the intersection between the lines
and polygons
roads_in_buffer <- st_intersection(monitor_buffers, roads)
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Map of the roads in the bu�ers
Zoomed in to Manhattan
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The resulting geometry is lines and includes
attributes from both tables
roads_in_buffer[,1:8] %>% 
  glimpse()

## Observations: 2,316
## Variables: 9
## $ site_id     <dbl> 11389, 2496, 6689, 2496, 11389, …
## $ reference   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ pm25_annual <dbl> 9.024395, 5.873043, 7.525750, 5.…
## $ Year_Recor  <dbl> 2017, 2017, 2017, 2017, 2017, 20…
## $ State_Code  <dbl> 36, 36, 36, 36, 36, 36, 36, 36, …
## $ Route_ID    <chr> "300258011", "257268011", "25625…
## $ Begin_Poin  <dbl> 3.58, 3.10, 1.40, 3.48, 3.60, 1.…
## $ End_Point   <dbl> 3.60, 3.20, 1.50, 3.50, 3.70, 1.…
## $ geom        <LINESTRING [US_survey_foot]> LINESTRI…
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So the �nal step would be to add the road
length and sum by site ID
roads_in_buffer <- roads_in_buffer %>% 
  mutate(length = st_length(geom))

monitor_roads <- roads_in_buffer %>% 
  group_by(site_id) %>% 
  summarise(total_roads = sum(length)) %>% 
  st_drop_geometry()
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Road length/density in the bu�ers
glimpse(monitor_roads)

## Observations: 64
## Variables: 2
## $ site_id     <dbl> 228, 952, 2269, 2496, 2596, 2818…
## $ total_roads [US_survey_foot] 2772.254 [US_survey_f…

80 / 187



Compute distance to the nearest road
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We could use st_distance()
dist <- st_distance(monitors, roads)
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But st_distance() computes a matrix of
distances from all features to all features
dim(dist)

## [1]    64 21464
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For speedier results you can:
Find the nearest road first

Then compute the distance to just this road
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First use st_nearest_feature()
feat <- st_nearest_feature(monitors, roads)

# Index of nearest feature
feat

##  [1]  6041 13014  9259 17955 11994  4240 12642 18540 20322  3584 
## [12]  9806 13617  8865  7471  2585 10303 12548  3242 16978 19174 
## [23]  7501  7350  3244 15063 19556  3914 17863  5847  8783 18704  
## [34] 18431  1085 10104  7640  5472 21371  4829    81  6201  5720 
## [45] 18125 14457 13931 14542 15712  2354  2444  7390 17884 15208  
## [56] 13927 12453  6955  2316 10638  5805  2340  7142 12690
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And then compute the distance from each
monitor to its nearest road
Use the by_element = TRUE argument so that the distance
is only measured from the 1st monitor to the 1st road, 2nd
to 2nd and so on.

min_dist <- st_distance(monitors, roads[feat,], 
                        by_element = TRUE)
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Create the minimum distance to road table
monitor_road_mindist <- monitors %>% 
  mutate(road_mindist = min_dist) %>% 
  select(-pm25_annual, -reference) %>% 
  st_drop_geometry()

head(monitor_road_mindist)

## # A tibble: 6 x 2
##   site_id     road_mindist
##     <dbl> [US_survey_foot]
## 1     228        838.19670
## 2     952         16.11883
## 3    2269         96.42880
## 4    2496        125.59963
## 5    2596        252.24296
## 6    2818       1250.33448
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How would we compute total population?
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Remember that our census areas are polygons
st_geometry(population) %>% 
  plot()
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Easiest solution would be to simply use the
population from the underlying census polygon
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To do this you can use a "spatial" join with
st_join()
st_join(monitors, population) %>% 
  glimpse()

## Observations: 64
## Variables: 9
## $ site_id     <dbl> 228, 952, 2269, 2496, 2596, 2818…
## $ reference   <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ pm25_annual <dbl> 6.473097, 6.591441, 6.107921, 5.…
## $ geom        <POINT [US_survey_foot]> POINT (918300…
## $ GEOID       <chr> "360850244013", "360850170083", …
## $ NAME        <chr> "Block Group 3, Census Tract 244…
## $ variable    <chr> "B01001_001", "B01001_001", "B01…
## $ population  <dbl> 2816, 2899, 817, 1733, 1194, 200…
## $ moe         <dbl> 544, 587, 135, 326, 311, 243, 31…
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The default for st_join() is to join if they
intersect
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Scienti�cally there is a problem with this
approach, though
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Census areas vary in size due to population
Lower population density in an area results in a larger
census area

This means that if you use only the underlying polygon
the "population" will be essentially the same wherever
you are!
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A better approach is to use the bu�ers
Sum the population from all census geography in the
buffer

But do it proportionally by area. In other words, if 10%
of a polygon is in the buffer then include 10% of the
population
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Add the full area as a variable to census
polygons
population <- population %>% 
  mutate(full_area = st_area(geom))
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Do the intersection
population_buffer <- st_intersection(monitor_buffers, 
                                     population)
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The polygons are clipped to the bu�ers
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Add the new area (since some areas get
clipped)
population_buffer <- population_buffer %>% 
  mutate(part_area = st_area(geom))
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Compute the area proportion and proportional
population
population_buffer <- population_buffer %>% 
  mutate(
    prop_area = part_area/full_area,
    buffer_pop = population * prop_area
  )
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Sum the population by bu�er
monitor_population <- population_buffer %>% 
  group_by(site_id) %>% 
  summarise(population = sum(buffer_pop)) %>% 
  st_drop_geometry()

101 / 187



open_exercise(7) and do activities 4-10 only
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Geoprocessing with rasters
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Lots of great functions for rasters as well!
reclassify()
extract()
calc()
crop()
mask()
trim()
overlay()
clump()
terrain()
zonal()
focal()
layerize()
aggregate()

104 / 187



Nearly all of these functions return a raster
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For our analysis we'll introduce layerize()
and extract(), mask(), crop() and
calc()
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First, a few favorite functions that are not part
of the analysis
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For "bonus" functions we will use elevation
data
elevation <- raster("elevation.tif")
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Plot elevation
plot(elevation)
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Bonus functions: Raster math

110 / 187



There are three approaches you can use to
recalculate values
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For simple raster arithmetic
For example, convert meters to feet by multiplying by 3.28

elevation_feet <- elevation * 3.28
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Plot of raster in feet
plot(elevation_feet)
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To apply a function calc()
Can be faster with complex formulas and large datasets

f <- function(x) {x[x>75 & x<125] <- 1000; return(x)}

elevation_odd <- calc(elevation, fun = f)
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Plot odd raster
plot(elevation_odd)
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For raster calculations with multiple rasters
use overlay()
For simplicity, I'm cheating and using the same raster
twice

f <- function(x,y){return(x * y)}

elevation_squared <- overlay(elevation, elevation, fun = f)
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Plot the overlay result
plot(elevation_squared)
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All three approaches can also be applied to a
RasterBrick or RasterStack
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Bonus functions: aggregate() to reduce
resolution
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Elevation layer has nearly 5 million cells
ncell(elevation)%>%
  format(big.mark   = ",") # format the number

## [1] "4,952,808"

# Cells are not square because the raster was projected
res(elevation) # meters

## [1] 22.7 30.3
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Reduce resolution by factor of 10
lowres <- aggregate(elevation, fact = 10, fun = mean)
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Lower resolution canopy is less than 50
thousand cells
ncell(lowres) %>%
  format(big.mark   = ",")

## [1] "49,784"

res(lowres)

## [1] 227 303
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Lower resolution elevation
plot(lowres)
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Note there is also a disaggregate()
function
r <- raster(nrow = 2, ncol = 2, vals = rnorm(4))
ncell(r)

## [1] 4

disaggregate(r, fact = 10) %>% 
  ncell()

## [1] 400
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For our mini-analysis we have two raster-based
variables to create

Compute the amount of high-intensity, developed land
within the buffers

Compute the average tree canopy within the buffers
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Start with computing the proportion of high
intensity, developed land within the bu�ers
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Here is the land use layer
plot(landuse)
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Note that it is a categorical raster
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The category de�nitions can be viewed using
levels()
This is true because the original raster came with a
metadata file (suffix .tfw)

129 / 187



Take a look at the levels limited to categories
with at least one cell
We're only interested in cells with a value of 24

levels(landuse)[[1]] %>% 
  filter(Count != 0) %>% 
  select(Value, Count, NLCD.2011.Land.Cover.Class) %>% 
  slice(1:10)

##    Value      Count  NLCD.2011.Land.Cover.Class
## 1      0 7854240512                Unclassified
## 2     11  469012527                  Open Water
## 3     12    1599206          Perennial Snow/Ice
## 4     21  292251633       Developed, Open Space
## 5     22  131633826    Developed, Low Intensity
## 6     23   59456652 Developed, Medium Intensity
## 7     24   21426522   Developed, High Intensity
## 8     31  110507264                 Barren Land
## 9     41  973617734            Deciduous Forest
## 10    42 1037912310            Evergreen Forest
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In each bu�er we will want to count the number
of grid cells with a value/code of 24
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Perhaps easiest to create a layer with 1 for
developed and 0 otherwise
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There are a couple of options
layerize()

Our friend from before, calc()
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layerize() is a magical function
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Create a binary layer for each category with
layerize()
Creates a RasterBrick
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Apply layerize()
landuse_layers <- layerize(landuse)
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The result is a raster brick with 16 layers
class(landuse_layers)

## [1] "RasterBrick"
## attr(,"package")
## [1] "raster"

nlayers(landuse_layers)

## [1] 16
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The names of the layers start with an "X"
followed by the value
names(landuse_layers)

##  [1] "X0"  "X11" "X21" "X22" "X23" "X24" "X31" "X41" "X42" "X43" 
## [12] "X71" "X81" "X82" "X90" "X95"
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We can pull out the layer of interest with
subset()
developed <- subset(landuse_layers, "X24")
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A plot of high-intensity, developed grid cells
plot(developed)
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layerize() works great but is more
computation than needed
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There is a simpler way to assign values of 24 to
1 and others to 0
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Use calc()
# Our function
f <- function(x){
  x[x != 24] <- 0
  x[x == 24] <- 1
  x
}

developed <- calc(landuse, f)
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A plot of high-intensity, developed grid cells
plot(developed)
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We have the raster layer we need...
Now we need to sum the cells by buffer
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If you have zones as vectors you can use
extract()
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extract() pulls values from the raster at
points or within polygons
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And extract() can use {sf} objects!
Though the documentation does not mention this 🤔
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extract() is particularly easy to apply if
you only need the cell value under each point
extract(developed, monitors)

##  [1] 0 0 0 1 0 0 0 1 1 0 1 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 1 1 
## [36] 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0
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But we want the total developed land in the
bu�ers (polygons)
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With polygons extract() returns all values
in a list by default
raw_vals <- extract(developed, monitor_buffers)

raw_vals[[1]][1:5]

## [1] 0 0 0 0 1

raw_vals[[20]][1:5]

## [1] 1 1 1 1 1
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You could sum the values yourself or...
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You can provide a summary function to
extract()
developed_count  <- extract(
  developed, 
  monitor_buffers, 
  fun = sum
)
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And here is our �nal result
head(developed_count)

##      [,1]
## [1,]   31
## [2,]   17
## [3,]   47
## [4,]  422
## [5,]  386
## [6,]   84
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Add the result to the original bu�er �le
monitor_developed <- monitor_buffers %>% 
  mutate(developed_count = c(developed_count)) %>% 
  select(site_id, developed_count) %>% 
  st_drop_geometry()
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Final computation in our mini-analysis!
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Average tree canopy in the bu�er
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Tree canopy is a numeric raster
canopy <- raster("canopy.tif")
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Values are percent of tree canopy
plot(canopy)
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Before using extract() to grab the values
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The raster extent is bigger than we need
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Let's crop and mask so we keep only raster
values in the counties

162 / 187



crop() will clip the raster to the (square)
extent of another layer
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crop() the canopy layer to the counties
cropped <- crop(canopy, counties)
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Plot the cropped raster
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mask() will assign NA to cells outside the
polygon layer
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mask() the canopy layer with the counties
masked <- mask(cropped, counties)
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Plot the masked (and cropped) layer
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Extract the values for the bu�ers using a
mean() function
canopy_vals <- extract(masked, monitor_buffers, 
                       fun = mean, na.rm=TRUE)
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Create the canopy table
monitors_canopy <- monitor_buffers %>% 
  mutate(canopy_avg = c(canopy_vals)) %>% 
  select(site_id, canopy_avg) %>% 
  st_drop_geometry()
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Results of our mini-analysis
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We have �ve result �les
We calculated road density by intersecting the buffers
with the roads with st_intersection() and
`st_length()

We calculated minimum distance to the nearest road
with st_nearest_feature() and st_distance()

We calculated population in the buffer by using
st_intersection() (poly to poly) and st_area()

We used calc() and extract() to calculated developed
land in the buffer from a raster

We used extract() (with some crop() and mask()) to
compute canopy in the raster
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We can assemble the pieces together
monitor_results <- monitors %>% 
  inner_join(monitor_roads, by = "site_id") %>% 
  inner_join(monitor_road_mindist, by = "site_id") %>% 
  inner_join(monitor_population, by = "site_id") %>% 
  inner_join(monitor_developed, by = "site_id") %>% 
  inner_join(monitors_canopy, by = "site_id")
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Map all our variables in one window
tm_shape(counties) + tm_polygons()+
tm_shape(monitor_results) + 
  tm_dots(c("pm25_annual", "total_roads", 
            "road_mindist", "population", 
            "developed_count", "canopy_avg"), size = 0.5)
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Map all our variables in one window
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Which variables are most strongly correlated
with air pollution?
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Look at correlation using the {base} function
cor()
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Tiny bit of prep
# Prepare the data
results <- monitor_results %>% 
  select(pm25_annual, total_roads, road_mindist, 
         population, developed_count, canopy_avg) %>% 
  st_drop_geometry()
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Look at correlation using the {base} function
cor()
cor(results) %>% round(2)
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Before creating a few scatter plots look at the
data once more
glimpse(monitor_results)

## Observations: 64
## Variables: 9
## $ site_id         <dbl> 228, 952, 2269, 2496, 2596, …
## $ reference       <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0…
## $ pm25_annual     <dbl> 6.473097, 6.591441, 6.107921…
## $ geom            <POINT [US_survey_foot]> POINT (91…
## $ total_roads     [US_survey_foot] 2772.254 [US_surv…
## $ road_mindist    [US_survey_foot] 838.19670 [US_sur…
## $ population      [1] 2276.8915 [1], 3464.4637 [1], …
## $ developed_count <dbl> 31, 17, 47, 422, 386, 84, 77…
## $ canopy_avg      <dbl> 16.88302752, 18.76931949, 34…
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Since correlation is strongest with
total_roads let's plot
library(ggplot2)
# Error, not happy with units
ggplot(monitor_results, aes(total_roads, pm25_annual)) + 
  geom_point() + geom_smooth(method = "lm")

## Error in Ops.units(x, range[1]): both operands of the expression 



Shucks, need to remove units, do you
remember how to do this?
monitor_results <- monitor_results %>% 
  mutate(total_roads = units::drop_units(total_roads))
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Our scatter plot of roads within 500 meters
against air pollution
ggplot(monitor_results, aes(total_roads, pm25_annual)) + 
  geom_point() + geom_smooth(method = "lm")

183 / 187



Amount of high-intensity developed land
within 500 meters against air pollution
ggplot(monitor_results, aes(developed_count, pm25_annual)) +
  geom_point() + geom_smooth(method = "lm")
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Summary of air quality results
Air quality strongly related to road density and
developed land use

Air quality negatively related to minimum distance to
the nearest road and tree canopy

Air quality modestly related to total population in the
buffer
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Please provide feedback before �nishing the
exercise
http://bit.ly/zrsaSpatialWorkshopFeedback
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open_exercise(7) and �nish
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