Composing knowledge graphs,

inside and out

Spencer Breiner!

spencer.breiner@ist.gov
Joint with Blake Pollard!, Peter Denno!

and Eswaran Subrahmanian?®:2

INIST 2CMU

March 18, 2020

Carnegie
!.}!I.ﬁrfe of Me]long

Standards and Technology UniverSity

U.S. Department of Commerce
2020-3-18 1/24

Breiner, et al (NIST) Composing knowledge graphs

About me (Spencer Breiner)

National Institute of Standards and Technology
e Information Technology Lab - Software & Systems Division

e Ph.D., CMU, 2013 - Category theory (CT) and logic

Current work: Applied CT for systems modeling
e Knowledge representation
e Knowledge integration
e Multiple semantics
Outline for today:
e Graphs & categories
e Why not (just) graphs?

e Knowledge graphs as categories and functors

Breiner, et al (NIST) Composing knowledge graphs 2020-3-18

2/24

What’s beneath a knowledge graph?

Knowledge Graphs:
“structured representations of semantic
knowledge that are stored in a graph”

What structure? Stored how?
Today, some possible answers from category theory.

Some themes:
Bite-size ontologies

Data/concept duality

Internalized computation/proof

Breiner, et al (NIST) Composing knowledge graphs 2020-3-18

3/24

Graphs

For today, graphs are directed and (optionally) multi-.
Any graph can be represented as
e A pair of sets N = Node and E = Edge, and

e A pair of functions s = src,t =tgt: E =3 N.

For example,

1
A/;\B E {1 2345678}
Rﬁ
8 C o) !
Q % | ,
D E N A B D E

\7 { C }

Breiner, et al (NIST)

Composing knowledge graphs

2020-3-18 4/24

Categories

A category is a graph G together with
e Version 1: A partial associative operation (with identities)

ExFE
Ul
{f-tgt = g.src} T E

Semantic categories: Sets, Graph, Vect, Type

e Version 2: A (concat-stable) equivalence relation over paths
{(fi) ~ (9;)} € Path(G) x Path(G)
Schemas: G = (£ = N), P = OSProb, S = OSSoln

Breiner, et al (NIST) Composing knowledge graphs 2020-3-18

5/24

Free categories (!)

Upshot: Any graph G already “is” a category.

The relationship is mediated by a free/forgetful adjunction
Cat

Free(G) — C € Cat
Free Forget

G — Forget(C) € Graph
Graph
Two round trips:
A monad ng : G — Path(G) (concat)

A comonad ec : Factor(C) — C (compute)

Breiner, et al (NIST)

Composing knowledge graphs

2020-3-18

6/24

A bite-sized example

Open-shop scheduling

Problem Schedule
Jobs | i s 1 2]3 45 6|7 8|9 10
saw |[2hr 2hr 2hr 1hr saw J1 ‘ Ja ‘ J2 ‘ Js
£ oarm|2m 3w 0 3 arinn ||k j4‘
g lathe | 2hr 3hr 3hr 0 lathe ja‘ J1 ‘ : J2
mill |2hr 2hr lhr 3hr mill j4‘ | & &]"1
Schematically,

P={(r:Jx M —R") S=(s,t:JxM=RT |ax.)
The two are related via a functor

F:P S

ThH——>1t—35

Breiner, et al (NIST) Composing knowledge graphs 2020-3-18

7/24

Functorial semantics & duality

F :P — S encodes: “every schedule solves some problem.”

Any concrete schedule (instance) defines a functor P : P — Sets
Nodes map to sets: P(J) = {ju, ja, j3,ja}
Edges map to functions: P(7) : (j2,lathe) — 3 hr

Every schema functor defines a dual transformation on instances

Inst(S) e Inst(P)
S(s), S(t) > S(t)—S(s)
Duality is just precomposition:

F

S~ p

sl lF*(S):F.S

Breiner, et al (NIST)

Composing knowledge graphs 2020-3-18

8/24

Why not (just) graphs?

e Structured nodes/edges: J x M
e Built-in elements (libraries): diff : RT x Rt — RT

e First-class axioms/proofs: sjm <tjm F F(T)jm € RT

e Not a graph homomorphism: F(7) = £.p

Breiner, et al (NIST) Composing knowledge graphs 2020-3-18 9/24

Structure in a category

The Cartesian product of two objects X and Y is a
diagram X L P 2 Y such that, for any object Z
and any pair of arrows z : Z — X and y : Z — Y, there

exists a unique map p = (z,y) such that p.m1 = = and

p.T2 = y.

VY | Yy

Breiner, al () Composing knowledge graphs 2020-3-18

10 /24

Generalized elements

A suggestive notation:
r:Z — X ez % X
Compare:

In set theory In category theory

peX XY ngXY

reX,yeY, p=(x,y) reX, yeY, p=(zx,y)
Z 4 ———

p-T1=T, p.T2=Y

Why generalize? In Sets, arrows {*} — X “see” everything in X, but...

In Graph, {*} can’t distinguish {* *} from {* — *}.

In Vect, {*} = R? can’t see anything (zero object).

Breiner, et al (NIST)

Composing knowledge graphs 2020-3-18

11/24

More structure

In programming, a function f(x : X) : Y is pure if
e It has no side effects (e.g., no IO, non-local variable mutation)
e It has consistent return values (e.g., no non-local variable dependence)

The pure fragment of a programming language defines a category Type.

The exponential adjunction mediates global/generalized elements

Type f: XxZ—Y
—><Z< >(_)Z '_f(ﬂi‘,—)—l : X —)YZ
Type e k) — @A)X
Round trips: eval : Y4xZ—Y

coeval: X — (X x 2)%

Breiner, et al (NIST)

Composing knowledge graphs 2020-3-18 12 /24

Types in a schema

We can think of schema libraries as
o A subschema Py C P, together with

e A fixed implementation functor impl : Py — Type

An instance should respect the behavior of the implementation:

P L Sets
Ul Tglob:Hom({*},)
Po . Type

impl

Problem: We want 7 € RT, but s,t € RT At—scRT.

Breiner, et al (NIST) Composing knowledge graphs 2020-3-18

13 /24

Logic in a schema

In general, formulas define subobjects, and inferences define sub-sub-objects:

o(x) F¥(z)
[¢] i— - —/>[[¢]]
X
Interpretations are defined recursively:
=y pAY eV Jy.¢
Diagonal Pullback Pushout Image

X [eny] —1[v] [Ay]—[¥] [e] —— [Fy.¢]
(id.id) _

A T S R
XXX [e] —X [l = [pvy] XxY—>X

Breiner, et al (NIST) Composing knowledge graphs 2020-3-18 14 /24

Proofs as diagrams

Formulas are (sub)objects, inferences & proofs are arrows:

An axiom: [<yl

H Sjim S tjm / I

Jx M ——=Rt xRt

s,t
An inference: [z <] R*
<yt (y—z)eR" I I
Rt xRt —— =R
ly—=]
The cut rule corresponds to concatenation of diagrams
e.g., F F(T)jm € RT
Breiner, et al (NIST) Composing knowledge graphs 2020-3-18

15 /24

Functors between graphs

Functors are more flexible than graph homomorphisms:

Nodes map to nodes, but edges map to paths.

P T x M d R+

r|] I

S Jx M . R+
4 p

Usually interested in structure-preserving functors (instances, too!)

Constructions: F(J x M) = F(J) x F(M)

F(Po)CS
Types: Py — — FPES > S

Breiner, et al (NIST) Composing knowledge graphs 2020-3-18

16 /24

Solutions as functors

Any solution algorithm a defines a matrix endomorphism

+\Jx M a +\Jx M
(RT) Y ——— (RT)

(Tjm) ! (sjm)
From this, we can define a functor A: S — P
A(8)jm = eval (a(rT—‘), (7, m))
A(t)jm = A(8)jm + Tjm
Tx M S (7 M) x RE)TM XD (7 hp) < (RE)THM S et
Defining A requires proof: a satisfies the axioms of S.

Note: Equivalence (R*)7*M = Matg+ (||, |M]) requires a labeling.

Breiner, et al (NIST) Composing knowledge graphs 2020-3-18

17 /24

A knowledge “graph”

By duality, every problem P € Inst(P) defines a solution A*(P) € Inst(S).

S Inst(S)
O o
P Inst(P)

The functors should satisfy F.A =idp (= A*.F* = idme(p)):

A(F(1)) = A(t —)
= A(t) — A(s)

= A(s) + 17— A(s)

=T

Breiner, et al (NIST) Composing knowledge graphs 2020-3-18 18 /24

Variation |

What’s the difference?

s

R+> < T———+R+

</\M N

What’s the same?

Problem generalization, functorially:

S---TK __.s
F’T TF
/
P K:T—JxM P

The other direction(s)?

Breiner, et al (NIST) Composing knowledge graphs 2020-3-18

19 /24

Variation I1

Duplicate machines (C'=“capability”, a=“assignment”)

7° M
JxC Rt ~_ .
Pd:=< > 5d:=<cl JxC_—Z R+>
M - C 04 r

The arrow (bundle, dep. type) M — C represents a family of sets {M,}.cc.

This time, we can go both ways (sort of)

3! T:arpo H:s,tss|* t|*
d S Sd
FdT FT X]Fd
d Pd
P T:c—id s G:M—C

Here H : M — M and s|%,t|* denote extension by zero along a.

Breiner, et al (NIST) Composing knowledge graphs 2020-3-18 20 /24

Variation 11

Duplicate jobs (P=Process catalog, O=Orders database)
C<—0<2—1
0:= < b\(\l’r/d ‘l’j >’ b= T+ZOZOC Zi:[O k(](l))

Rt —«——J
k

Extract the daily schedule by mapping to a pushout:

P O+P
J

J x M IxM

l/jxid

T Jx M
Rt ¢ RT

Breiner, et al (NIST) Composing knowledge graphs 2020-3-18

21 /24

Variation IV

Duplicate jobs and machines (M=Shop floor model)

Breiner, et al (NIST) Composing knowledge graphs 2020-3-18 22 /24

Wrapping Up

Recap:
e Bite-sized semantic models & functorial instances
e Built-in logic & computation via (preservation of) structure
e Knowledge graphs as schemas & functors.
More goodies:
e Build-your-own semantics (presheaves)
e Internal concepts generate external schemas (Yoneda/slice cat.)
e Relationships between relationships (Natural transformations)
The bad news...

e Limited tooling

e Steep learning curve

Breiner, et al (NIST) Composing knowledge graphs 2020-3-18 23 /24

Thank you!

PS. This talk is based on a paper under re-
view, but a draft is available on request

from spencer.breiner@nist.gov.

> knowledge

mailto:spencer.breiner@nist.gov

	Graphs & Categories
	Not (just) graphs
	Composing knowledge

