

SURI SIR IIT BOMBAY

ACCORDING TO PHYSICS...
THE GLASS IS NEVER EMPTY

(O) njoy_suri

Harsh Sir
Theory Class: Monday \& Thursday (9pm) MCQ Class: Wednesday (8pm)

Suri Sir

Theory Class:
Wednesday \& Saturday (9pm)
MCQ Class: Monday (8pm)

Arvind Sir

Theory Class: Tuesday \& Friday (9pm) MCQ Class: Thursday (8pm)

Daily Schedule

Vedantu JEE 2021 Program

-F E A T URES-

$\rightarrow \mathbf{2 5 0 0}+$ hours of LIVE online teaching
$\rightarrow \mathbf{4 5 +}$ Teachers; from Top IITs and 10+ years experience
$\rightarrow 750$ Tests \& $\mathbf{3 0 0 0}$ Assignments for Practical Application
\rightarrow Instant Doubt Solving By Academic Mentors
\rightarrow Replay/Recording of Classes If You've Missed
\rightarrow Rank Booster Quizzes
\rightarrow Previous Paper Analysis

Boost your learning with Vedantu Pro
 vdnt.in/YTJEE21

Enroll for FREE
$\Delta^{\vee} \Delta^{\vee} \Delta^{\prime}$ $\Delta \nabla_{\Delta} \nabla_{\Delta}$ $\Delta^{\nabla} \Delta^{\nabla} \nabla^{\top}$ $\Delta^{\nabla} \Delta^{\nabla} \nabla^{\top}$ $\Delta^{\nabla} \Delta^{\nabla} \nabla^{\top}$ ${ }_{\Delta} \nabla_{\Delta} \nabla_{\Delta} \Delta^{\top}$ ${ }_{\Delta} \nabla_{\Delta} \nabla_{\Delta}{ }^{\top}$ $\Delta^{\nabla} \Delta_{\Delta} \nabla_{\Delta}$

SUBSCFIBE

${ }_{\Delta} \nabla_{\Delta} \nabla_{\Delta}{ }^{\top}$
$\Delta^{\nabla} \Delta^{\nabla} \nabla^{\top}$
$\nabla_{\wedge} \nabla_{\wedge} \nabla_{\Lambda}$

$$
\Delta^{\vee} \Delta^{\vee}
$$

Problems on Electrostatics

স
Q. A point charge is surrounded symmetrically by six identical charges at distance r as shown in the figure. How much work is done by the forces of electrostatic repulsion when the point charge q at the centre is sent to infinity
A zero
B $6 q^{2} / 4 \pi \varepsilon_{0} r$
C $\mathrm{q}^{2} / 4 \pi \varepsilon_{0} \mathrm{r}$

D $12 \mathrm{q}^{2} / 4 \pi \varepsilon_{0} \mathrm{r}$
Q. In moving from A to B along an electric field line, the electric field does $6.4 \times 10^{-19} \mathrm{~J}$ of work on an electron. If $\emptyset_{1}, \emptyset_{2}$ are equipotential surfaces, then the potential difference $\left(\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{A}}\right)$ is

A $-4 V$
B 4 V
C Zero

D 64 V
Q. Two point charge -q and $+\mathrm{q} / 2$ are situated at the origin and at the point ($\mathrm{a}, \mathrm{o}, \mathrm{o}$) respectively. The point along the X -axis where the electric field vanishes is

A $\quad x=\frac{a}{\sqrt{2}}$
B $x=\sqrt{2} a$
C $x=\frac{\sqrt{2} a}{\sqrt{2}-1}$
D $x=\frac{\sqrt{2} a}{\sqrt{2}+1}$
Q. Charge of $+\frac{10}{3} \times 10^{-9} \mathrm{C}$ are placed at each of the four corners of a square of side 8 cm . The potential at the intersection of the diagonals is

A $150 \sqrt{2}$ volt
B $1500 \sqrt{2}$ volt
C $900 \sqrt{2}$ volt
D 900 volt
Q. A charge $(-q)$ and another charge $(+Q)$ are kept at two points A and B respectively. Keeping the charge $(+Q)$ fixed at B, the charge $(-q)$ at A is moved to another point C such that $A B C$ forms an equilateral triangle of side l . The net work done in moving the charge $(-\mathrm{q})$ is

A $\frac{1}{4 \pi \varepsilon_{o}} \frac{Q q}{l}$
B $\frac{1}{4 \pi \varepsilon_{o}} \frac{Q q}{l^{2}}$
C $\frac{1}{4 \pi \varepsilon_{o}} Q q l$
D zero
Q. An infinite line charge produce a field of $7.182 \times 10^{8} \mathrm{~N} / \mathrm{C}$ at a distance of 2 cm . The linear charge density is

A $7.27 \times 10^{-4} \mathrm{C} / \mathrm{m}$
B $7.98 \times 10^{-4} \mathrm{C} / \mathrm{m}$
C $7.11 \times 10^{-4} \mathrm{C} / \mathrm{m}$
D $7.04 \times 10^{-4} \mathrm{C} / \mathrm{m}$
Q. Two thin wire rings each having a radius R are placed at a distance d apart with their axes coinciding. The charges on the two rings are +q and -q . The potential difference between the centres of the two rings is (JEE 2005)

A zero
B $\frac{Q}{4 \pi \varepsilon_{o}}\left[\frac{1}{R}-\frac{1}{\sqrt{R^{2}+d^{2}}}\right]$
C $\quad \mathrm{QR} / 4 \pi \varepsilon_{0} \mathrm{~d}^{2}$
D $\frac{Q}{2 \pi \varepsilon_{o}}\left[\frac{1}{R}-\frac{1}{\sqrt{R^{2}+d^{2}}}\right]$
Q. Two charges $+3.2 \times 10^{-19}$ and $-3.2 \times 10^{-19} \mathrm{C}$ placed 2.4 m apart to form an electric dipole. It is placed in a uniform electric field of intensity $4 \times 10^{5} \mathrm{volt} / \mathrm{m}$. The electric dipole moment is

A 15.36×10^{-29} coulomb $\times \mathrm{m}$
B 15.36×10^{-19} coulomb $\times \mathrm{m}$
C 7.68×10^{-29} coulomb $\times \mathrm{m}$
D 7.68×10^{-19} coulomb $\times \mathrm{m}$
Q. In a region the electric potential is given by $V=2 x+2 y-3 z$ obtain the expression for electric field :

A $-2 \hat{i}-2 \hat{j}+3 \hat{k}$
B $3 \hat{i}+4 \hat{j}-2 \hat{k}$
C $2 \hat{i}-2 \hat{j}-3 \hat{k}$
D None of these
Q. An electric dipole, made of positive and negative charges, each of $1 \mu \mathrm{C}$ and placed at a distance 2 cm apart. If the dipole is placed in an electric field of $10^{5} \mathrm{~N} / \mathrm{C}$, then the maximum torque which the field can exert on the dipole, if it is turned from a position $\theta=0^{\circ}$ to $\theta=180^{\circ}$ is:

A $2 \times 10^{-3} \mathrm{~N}-\mathrm{m}$

B $3 \times 10^{-3} \mathrm{~N}-\mathrm{m}$

C $4 \times 10^{-3} \mathrm{~N}-\mathrm{m}$
D $2.8 \times 10^{-3} \mathrm{~N}-\mathrm{m}$
Q. What work must be done to rotate an electric dipole through an angle θ with the electric field, if an electric dipole of moment p is placed in an uniform electric field E with p parallel to E ?

A $\mathrm{W}=\mathrm{pE}(1-\cos \theta)$

B $\mathrm{W}=\mathrm{pE}(1+\cos \theta)$

C $\mathrm{W}=2 \mathrm{pE}(1-\cos \theta)$

D None of these
Q. Electric dipole moment of combination shown in the figure, is :

A $q a+q a \sqrt{2}+q a$
B $2 \sqrt{2} q a$
C $\sqrt{2} q a$
D $(\sqrt{2}+1) q a$

Q. Six negative equal charges are placed at the vertices of a regular hexagon. 6 q charge is placed at the centre of the hexagon. The electric dipole moment of the system is :

A zero

B 6qa

C 3qa

D None of the above
Q. Two positive charges of magnitude ' q ' are placed at the ends of a side (side 1) of a square of side ' 2 a '. Two negative charges of the same magnitude are kept at the other corners. Starting from rest, if a charge Q moves from the middle of side 1 to the centre of square, its kinetic energy at the centre of square is (jee 2011)

A zero
B $\frac{1}{4 \pi \varepsilon_{o}} \frac{2 q Q}{a}\left(1+\frac{1}{\sqrt{5}}\right)$
C $\frac{1}{4 \pi \varepsilon_{o}} \frac{2 q Q}{a}\left(1-\frac{2}{\sqrt{5}}\right)$
D $\frac{1}{4 \pi \varepsilon_{o}} \frac{2 q Q}{a}\left(1-\frac{1}{\sqrt{5}}\right)$
Q. The given figure shows variation with distance r from centre o (jee 2019)

A electric field of a uniformly charged sphere.
B potential of a uniformly charged spherical shell.
C potential of a uniformly charged sphere.
D electric field of a uniformly charged spherical shell

Q. An electric field of $1000 \mathrm{~V} / \mathrm{m}$ is applied to an electric dipole at angle of 45°. The value of electric dipole moment is $10^{-29} \mathrm{C} \mathrm{m}$. What is the potential energy of dipole? (jee 2019)

$$
\begin{aligned}
& \text { A }-20 \times 10^{-18} \mathrm{~J} \\
& \text { B }-7 \times 10^{-27} \mathrm{~J} \\
& \text { C }-10 \times 10^{-29} \mathrm{~J} \\
& \text { D }-9 \times 10^{-20} \mathrm{~J}
\end{aligned}
$$

Q. A charge Q is distributed over three concentric spherical shells of radii $a, b, c(a<b<c)$ such that their surface charge densities are equal to another. The total potential at a point at distance r from their common centre, where r < a, would be
(Homework Question)
A $\frac{1}{12 \pi \varepsilon_{o}} \frac{a b+b c+c a}{a b c}$
B $\frac{Q\left(a^{2}+b^{2}+c^{2}\right)}{4 \pi \varepsilon_{o}\left(a^{3}+b^{3}+c^{3}\right)}$
C $\frac{Q}{4 \pi \varepsilon_{o}(a+b+c)}$
D $\frac{Q(a+b+c)}{4 \pi \varepsilon_{0}\left(a^{2}+b^{2}+c^{2}\right)}$

JEE Mains Crash Course

-F E A T URES-

$\rightarrow \mathbf{9 0}$ Live Classes By Best Teachers

- 3 sessions everyday - Mon to Sat for 6 weeks

Batch Starts on:
 11 th MAY 2020

$\rightarrow 20+$ Comprehensive Tests; Assignments \& Detailed Analysis
\rightarrow UNLIMITED Doubt Solving both inside and outside class.
\rightarrow Replay/Recording of Classes If You've Missed
\rightarrow Important Tips \& Tricks To Crack JEE
\rightarrow In class Rank Booster Quizzes
\rightarrow Previous Paper Analysis

JEE

 Crash Course

 Crash Course}

Vedantu
Learn LIVE Online

Lightning Deal: $₹ 709 \rightarrow$ 寅 5999

Use Coupon Code: SMCC Buy Now @ https://vdnt.in/JEECCE

How to Avail The Lightning Deal

Visit the link mentioned below
httos://vdnt.in/JEECCE

ENROLL NOW

Step-1:
Click on "ENROLL NOW"
Step -2:
Click on "I have a coupon code"
Step-3:
Apply Coupon SMCC

Vedantu Online Revolution

KAUN BOLA GHAR SE NAA HOPAYEGA?

ALL CATEGORIES

How to cover missed lectures of Electrostatics?

৷

JEEt Lo 2021 | JEE Main 2021 (PCM) | JEE Main Preparation | IIT JEE 2021 | Vedantu JEE

24 videos • 4,965 views • Updated today
Public

Electric Potential \& Potential Energy - Electrostatics IIT JEE | JEEt Lo 2021 for Class 12 | Vedantu
Vedantu JEE

JEE Main 2021(IIT JEE 2021) - JEE Main
Preparation: JEEt Lo 2021 Playlist to learn All
Subjects (IIT JEE Maths, IIT JEE Physics and
IIT JEE Chemistry) \& All Chapters Lectures In JEE Physics | Vedantu JEE
Vedantu JEE • Premieres 5/4/20, 8:00 PM

1 Shot for 'JEE Main 2021'.

Join Vedantu JEE

 Telegram channelAssignments
Notes
Daily Update
https://vdnt.in/JEEVedantu
Link in Bio
$\Delta \Delta^{\vee} \Delta$

CRACK JEE
 $*$ JEE

RLIKE

SHARE

SUBSCRIBE
\#LearningWon'tStop

